Advertisement

Annales Henri Poincaré

, Volume 19, Issue 2, pp 325–383 | Cite as

The Topological Classification of One-Dimensional Symmetric Quantum Walks

  • C. Cedzich
  • T. Geib
  • F. A. Grünbaum
  • C. Stahl
  • L. Velázquez
  • A. H. Werner
  • R. F. Werner
Article

Abstract

We give a topological classification of quantum walks on an infinite 1D lattice, which obey one of the discrete symmetry groups of the tenfold way, have a gap around some eigenvalues at symmetry protected points, and satisfy a mild locality condition. No translation invariance is assumed. The classification is parameterized by three indices, taking values in a group, which is either trivial, the group of integers, or the group of integers modulo 2, depending on the type of symmetry. The classification is complete in the sense that two walks have the same indices if and only if they can be connected by a norm-continuous path along which all the mentioned properties remain valid. Of the three indices, two are related to the asymptotic behavior far to the right and far to the left, respectively. These are also stable under compact perturbations. The third index is sensitive to those compact perturbations which cannot be contracted to a trivial one. The results apply to the Hamiltonian case as well. In this case, all compact perturbations can be contracted, so the third index is not defined. Our classification extends the one known in the translation- invariant case, where the asymptotic right and left indices add up to zero, and the third one vanishes, leaving effectively only one independent index. When two translation-invariant bulks with distinct indices are joined, the left and right asymptotic indices of the joined walk are thereby fixed, and there must be eigenvalues at 1 or \(-\,1\) (bulk-boundary correspondence). Their location is governed by the third index. We also discuss how the theory applies to finite lattices, with suitable homogeneity assumptions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahlbrecht, A., Scholz, V.B., Werner, A.H.: Disordered quantum walks in one lattice dimension. J. Math. Phys. 52(10), 102201 (2011). arXiv:1101.2298 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Ahlbrecht, A., Vogts, H., Werner, A.H., Werner, R.F.: Asymptotic evolution of quantum walks with random coin. J. Math. Phys. 52(4), 042201 (2011). arXiv:1009.2019 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Altland, A., Zirnbauer, M .R.: Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structures. Phys. Rev. B 55(2), 1142–1161 (1997)ADSCrossRefGoogle Scholar
  4. 4.
    Andruchow, E.: Pairs of projections: geodesics, Fredholm and compact pairs. Complex Anal. Oper. Theory 8(7), 1435–1453 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Asbóth, J.K.: Symmetries, topological phases, and bound states in the one-dimensional quantum walk. Phys. Rev. B 86(19), 195414 (2012). arXiv:1208.2143 ADSCrossRefGoogle Scholar
  6. 6.
    Asbóth, J.K., Obuse, H.: Bulk-boundary correspondence for chiral symmetric quantum walks. Phys. Rev. B 88(12), 121406 (2013). arXiv:1303.1199 ADSCrossRefGoogle Scholar
  7. 7.
    Avron, J., Seiler, R., Simon, B.: The index of a pair of projections. J. Funct. Anal. 120(1), 220–237 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Barkhofen, S., Nitsche, T., Elster, F., Lorz, L., Gabris, A., Jex, I., Silberhorn, C.: Measuring topological invariants and protected bound states in disordered discrete time quantum walks. (2016). arXiv:1606.00299
  9. 9.
    Brown, L.G., Douglas, R.G., Fillmore, P.A.: Unitary equivalence modulo the compact operators and extensions of C*-algebras. In Proceedings: Dalhousie University, Halifax, pp. 58–128. Springer (1973)Google Scholar
  10. 10.
    Carpentier, D., Delplace, P., Fruchart, M., Gawędzki, K.: Topological index for periodically driven time-reversal invariant 2D systems. Phys. Rev. Lett. 114(10), 106806 (2015). arXiv:1407.7747 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Carpentier, D., Delplace, P., Fruchart, M., Gawędzki, K., Tauber, C.: Construction and properties of a topological index for periodically driven time-reversal invariant 2D crystals. Nucl. Phys. B 896, 779–834 (2015). arXiv:1503.04157 ADSCrossRefzbMATHGoogle Scholar
  12. 12.
    Cedzich, C., Grünbaum, F .A., Stahl, C., Werner, A .H., Werner, R .F.: Bulk-edge correspondence of one-dimensional quantum walks. J. Phys. A Math. Theor. 49(21), 21LT01 (2016). arXiv:1502.02592 MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Cedzich, C., Grünbaum, F.A., Geib, T., Stahl, C., Velázquez, L., Werner, A.H., Werner, R.F.: Complete homotopy invariants for translation invariant symmetric quantum walks on a chain. In preparationGoogle Scholar
  14. 14.
    Cedzich, C., Grünbaum, F.A., Velázquez, L., Werner, A.H., Werner, R.F.: A quantum dynamical approach to matrix Khrushchev’s formulas. Commun. Pure Appl. Math. 69(5), 909–957 (2016). arXiv:1405.0985 MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Cedzich, C., Rybár, T., Werner, A.H., Alberti, A., Genske, M., Werner, R.F.: Propagation of quantum walks in electric fields. Phys. Rev. Lett. 111(16), 160601 (2013). arXiv:1302.2081 ADSCrossRefGoogle Scholar
  16. 16.
    Chen, X., Gu, Z.-C., Wen, X.-G.: Classification of gapped symmetric phases in one-dimensional spin systems. Phys. Rev. B 83(3), 035107 (2011). arXiv:1008.3745 ADSCrossRefGoogle Scholar
  17. 17.
    Stahl, C.: Interactive tool at https://qig.itp.uni-hannover.de/bulkedge/sse
  18. 18.
    Genske, M., Alt, W., Steffen, A., Werner, A.H., Werner, R.F., Meschede, D., Alberti, A.: Electric quantum walks with individual atoms. Phys. Rev. Lett. 110(19), 190601 (2013). arXiv:1302.2094 ADSCrossRefGoogle Scholar
  19. 19.
    Graf, G.M., Porta, M.: Bulk-edge correspondence for two-dimensional topological insulators. Commun. Math. Phys. 324(3), 851–895 (2013). arXiv:1207.5989 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Grimmett, G., Janson, S., Scudo, P.F.: Weak limits for quantum random walks. Phys. Rev. E 69(2), 026119 (2004). arXiv:quant-ph/0309135 ADSCrossRefGoogle Scholar
  21. 21.
    Gross, D., Nesme, V., Vogts, H., Werner, R.F.: Index theory of one dimensional quantum walks and cellular automata. Commun. Math. Phys. 310(2), 419–454 (2012). arXiv:0910.3675 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Großmann, J., Schulz-Baldes, H.: Index pairings in presence of symmetries with applications to topological insulators. Commun. Math. Phys. 343(2), 477–513 (2016). arXiv:1503.04834 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Halmos, P.R.: Two subspaces. Trans. Am. Math. Soc. 144, 381–389 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Hasan, M., Kane, C.L.: Colloquium: topological insulators. Rev. Mod. Phys. 82(4), 3045–3067 (2010). arXiv:1002.3895 ADSCrossRefGoogle Scholar
  25. 25.
    Joye, A.: Dynamical localization for d-dimensional random quantum walks. Quantum Inf. Process. 11(5), 1251–1269 (2012). arXiv:1201.4759 MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Kane, C .L., Mele, E .J.: \({\mathbb{Z}} _{2}\) topological order and the quantum spin Hall effect. Phys. Rev. Lett. 95(14), 146802 (2005). arXiv:cond-mat/0506581 ADSCrossRefGoogle Scholar
  27. 27.
    Kane, C.L., Mele, E.J.: Quantum spin Hall effect in graphene. Phys. Rev. Lett. 95(22), 226801 (2005). arXiv:cond-mat/0411737 ADSCrossRefGoogle Scholar
  28. 28.
    Karski, M., Förster, L., Choi, J.M., Alt, W., Widera, A., Meschede, D.: Nearest-neighbor detection of atoms in a 1D optical lattice by fluorescence imaging. Phys. Rev. Lett. 102(5), 053001 (2009). arXiv:0807.3894 ADSCrossRefGoogle Scholar
  29. 29.
    Kato, T.: Perturbation Theory of Linear Operators. Springer (1966/1984)Google Scholar
  30. 30.
    Kitaev, A.: Periodic table for topological insulators and superconductors. AIP Conf. Proc. 1134, 22–30 (2009). arXiv:0901.2686 ADSCrossRefzbMATHGoogle Scholar
  31. 31.
    Kitaev, A., Laumann, C.: Topological phases and quantum computation. In: Les Houches Summer School “Exact methods in low-dimensional physics and quantum computing”. Oxford University Press, (2010). arXiv:0904.2771
  32. 32.
    Kitagawa, T.: Topological phenomena in quantum walks: elementary introduction to the physics of topological phases. Quantum Inf. Process. 11(5), 1107–1148 (2012). arXiv:1112.1882 MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Kitagawa, T., Rudner, M.S., Berg, E., Demler, E.: Exploring topological phases with quantum walks. Phys. Rev. A 82(3), 033429 (2010). arXiv:1003.1729 ADSCrossRefGoogle Scholar
  34. 34.
    Last, Y.: Quantum dynamics and decompositions of singular continuous spectra. J. Funct. Anal. 142(2), 406–445 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Nagy, B., Foias, C., Bercovici, H., Kérchy, L.: Harmonic Analysis of Operators on Hilbert Space. Springer, Berlin (2010)CrossRefzbMATHGoogle Scholar
  36. 36.
    Prodan, E., Schulz-Baldes, H.: Bulk and boundary invariants for complex topological insulators: from K-theory to physics. Mathematical Physics Studies. Springer (2016). arXiv:1510.08744
  37. 37.
    Qi, X.-L., Zhang, S.-C.: Topological insulators and superconductors. Rev. Mod. Phys. 83(4), 1057 (2011). arXiv:1008.2026 ADSCrossRefGoogle Scholar
  38. 38.
    Raeburn, I., Sinclair, A.M.: The C*-algebra generated by two projections. Math. Scand. 65(2), 278–290 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Raggio, G.A., Werner, R.F.: Quantum statistical mechanics of general mean field systems. Helv. Phys. Acta 62(8), 980–1003 (1989)MathSciNetzbMATHGoogle Scholar
  40. 40.
    Reed, M., Simon, B.: Methods of Modern Mathematical Physics, vol. 4. Academic Press, Cambridge (1978)zbMATHGoogle Scholar
  41. 41.
    Roe, J.: Lectures on Coarse Geometry. AMS (2008)Google Scholar
  42. 42.
    Ryu, S., Schnyder, A.P., Furusaki, A., Ludwig, A.W.: Topological insulators and superconductors: tenfold way and dimensional hierarchy. New J. Phys. 12(6), 065010 (2010). arXiv:0912.2157 ADSCrossRefGoogle Scholar
  43. 43.
    Schnyder, A., Ryu, S., Furusaki, A., Ludwig, A.: Classification of topological insulators and superconductors. AIP Conf. Proc. 1134, 10–21 (2009). arXiv:0905.2029 ADSCrossRefzbMATHGoogle Scholar
  44. 44.
    Schreiber, A., Cassemiro, K.N., Potoček, V., Gábris, A., Mosley, P.J., Andersson, E., Jex, I., Silberhorn, C.: Photons walking the line: a quantum walk with adjustable coin operations. Phys. Rev. Lett. 104(5), 050502 (2010). arXiv:0910.2197 ADSCrossRefGoogle Scholar
  45. 45.
    Schuch, N., Pérez-García, D., Cirac, I.: Classifying quantum phases using matrix product states and projected entangled pair states. Phys. Rev. B 84(16), 165139 (2011). arXiv:1010.3732 ADSCrossRefGoogle Scholar
  46. 46.
    Schulz-Baldes, H.: \(\mathbb{Z}_2\)-indices and factorization properties of odd symmetric Fredholm operators. Doc. Math. 20, 1481–1500 (2015). arXiv:1311.0379 MathSciNetzbMATHGoogle Scholar
  47. 47.
    Schulz-Baldes, H.: Topological insulators from the perspective of non-commutative geometry and index theory. Jahresber. Deutsch. Math.-Verein 118(4), 247–273 (2016). arXiv:1607.04013 MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Simon, B., Taylor, M.: Harmonic analysis on SL(2,\(\mathbb{R}\)) and smoothness of the density of states in the one-dimensional Anderson model. Commun. Math. Phys. 101(1), 1–19 (1985)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Stahl, C.: Interactive Mathematica notebook at http://qig.itp.uni-hannover.de/bulkedge
  50. 50.
    Tarasinski, B., Asbóth, J.K., Dahlhaus, J.P.: Scattering theory of topological phases in discrete-time quantum walks. Phys. Rev. A 89(4), 042327 (2014). arXiv:1401.2673 ADSCrossRefGoogle Scholar
  51. 51.
    Thiang, G.C.: On the K-theoretic classification of topological phases of matter. Ann. Inst. H. Poincaré Phys. Théor. 17(4), 757–794 (2016). arXiv:1406.7366 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  52. 52.
    von Neumann, J.: Allgemeine Eigenwerttheorie Hermitischer Funktionaloperatoren. Math. Ann. 102(1), 49–131 (1929)CrossRefzbMATHGoogle Scholar
  53. 53.
    Wigner, E.P.: Group Theory and Its Application to the Quantum Mechanics of Atomic Spectra. Academic Press, Cambridge (1959)zbMATHGoogle Scholar
  54. 54.
    Zumino, B.: Normal forms of complex matrices. J. Math. Phys. 3(5), 1055–1057 (1962)ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • C. Cedzich
    • 1
  • T. Geib
    • 1
  • F. A. Grünbaum
    • 2
  • C. Stahl
    • 1
  • L. Velázquez
    • 3
  • A. H. Werner
    • 4
    • 5
  • R. F. Werner
    • 1
  1. 1.Institut für Theoretische PhysikLeibniz Universität HannoverHannoverGermany
  2. 2.Department of MathematicsUniversity of CaliforniaBerkeleyUSA
  3. 3.Departamento de Matemática Aplicada and IUMAUniversidad de ZaragozaZaragozaSpain
  4. 4.QMATH, Department of Mathematical SciencesUniversity of CopenhagenCopenhagenDenmark
  5. 5.NBIA, Niels Bohr InstituteUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations