Advertisement

Annales Henri Poincaré

, Volume 19, Issue 1, pp 283–322 | Cite as

\(L^p\)-Boundedness of Wave Operators for the Three-Dimensional Multi-Centre Point Interaction

  • Gianfausto Dell’Antonio
  • Alessandro Michelangeli
  • Raffaele Scandone
  • Kenji YajimaEmail author
Article

Abstract

We prove that, for arbitrary centres and strengths, the wave operators for three-dimensional Schrödinger operators with multi-centre local point interactions are bounded in \(L^p({\mathbb {R}}^3)\) for \(1<p<3\) and unbounded otherwise.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albeverio, S., Brzeźniak, Z., Dabrowski, L.: Fundamental solution of the heat and Schrödinger equations with point interaction. J. Funct. Anal. 130, 220–254 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Albeverio, S., Fenstad, J.E., Høegh-Krohn, R.: Singular perturbations and nonstandard analysis. Trans. Am. Math. Soc. 252, 275–295 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Albeverio, S., Gesztesy, F., Høegh-Krohn, R., Holden, H.: Solvable Models in Quantum Mechanics. Texts and Monographs in Physics. Springer, New York (1988)CrossRefzbMATHGoogle Scholar
  4. 4.
    Artbazar, G., Yajima, K.: The \(L^p\)-continuity of wave operators for one dimensional Schrödinger operators. J. Math. Sci. Univ. Tokyo 7, 221–240 (2000)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Beceanu, M.: Structure of wave operators for a scaling-critical class of potentials. Am. J. Math. 136, 255–308 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Beceanu, M., Schlag, W.: Structure formulas for wave operators. arXiv:1612.07304 (2016)
  7. 7.
    Beceanu, M., Schlag, W.: Structure formulas or wave operators under a small scaling invariant condition. arXiv:1701.03015 (2017)
  8. 8.
    Bethe, H., Peierls, R.: Quantum theory of the diplon. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 148, 146–156 (1935)ADSCrossRefzbMATHGoogle Scholar
  9. 9.
    Bethe, H.A., Peierls, R.: The scattering of neutrons by protons. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 149, 176–183 (1935)ADSCrossRefzbMATHGoogle Scholar
  10. 10.
    Dabrowski, L., Grosse, H.: On nonlocal point interactions in one, two, and three dimensions. J. Math. Phys. 26, 2777–2780 (1985)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    D’Ancona, P., Fanelli, L.: \(L^p\)-boundedness of the wave operator for the one dimensional Schrödinger operator. Commun. Math. Phys. 268, 415–438 (2006)ADSCrossRefzbMATHGoogle Scholar
  12. 12.
    D’Ancona, P., Pierfelice, V., Teta, A.: Dispersive estimate for the Schrödinger equation with point interactions. Math. Methods Appl. Sci. 29, 309–323 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Dell’Antonio, G., Figari, R., Teta, A.: A brief review on point interactions. In: Inverse problems and imaging, vol. 1943 of Lecture Notes in Mathematics, pp. 171–189. Springer, Berlin (2008)Google Scholar
  14. 14.
    Duchêne, V., Marzuola, J.L., Weinstein, M.I.: Wave operator bounds for one-dimensional Schrödinger operators with singular potentials and applications. J. Math. Phys. 52, 013505, 17 (2011)CrossRefzbMATHGoogle Scholar
  15. 15.
    Finco, D., Yajima, K.: The \(L^p\) boundedness of wave operators for Schrödinger operators with threshold singularities. II. Even dimensional case. J. Math. Sci. Univ. Tokyo 13, 277–346 (2006)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Ginibre, J., Velo, G.: The global Cauchy problem for the nonlinear Schrödinger equation revisited. Ann. Inst. H. Poincaré Anal. Non Linéaire 2, 309–327 (1985)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Grafakos, L.: Classical Fourier Analysis. Vol. 249 of Graduate Texts in Mathematics, 3rd edn. Springer, New York (2014)Google Scholar
  18. 18.
    Grafakos, L.: Modern Fourier Analysis. Vol. 250 of Graduate Texts in Mathematics, 3rd edn. Springer, New York (2014)Google Scholar
  19. 19.
    Grossmann, A., Høegh-Krohn, R., Mebkhout, M.: A class of explicitly soluble, local, many-center Hamiltonians for one-particle quantum mechanics in two and three dimensions. Int. J. Math. Phys. 21, 2376–2385 (1980)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    Grossmann, A., Høegh-Krohn, R., Mebkhout, M.: The one particle theory of periodic point interactions. Polymers, monomolecular layers, and crystals. Commun. Math. Phys. 77, 87–110 (1980)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    Iandoli, F., Scandone, R.: Dispersive estimates for Schrödinger operators with point interactions in \({{\mathbb{R}}}^3\). In: Michelangeli, A., Dell’Antonio, G. (eds.) Advances in Quantum Mechanics: Contemporary Trends and Open Problems. Springer INdAM Series, vol. 18, pp. 187–199. Springer, New YorkGoogle Scholar
  22. 22.
    Jensen, A., Yajima, K.: A remark on \(L^p\)-boundedness of wave operators for two-dimensional Schrödinger operators. Commun. Math. Phys. 225, 633–637 (2002)ADSCrossRefzbMATHGoogle Scholar
  23. 23.
    Jensen, A., Yajima, K.: On \(L^p\) boundedness of wave operators for 4-dimensional Schrödinger operators with threshold singularities. Proc. Lond. Math. Soc. 3(96), 136–162 (2008)CrossRefzbMATHGoogle Scholar
  24. 24.
    Kronig, R.d L., Penney, W.G.: Quantum mechanics of electrons in crystal lattices. Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci. 130, 499–513 (1931)ADSCrossRefzbMATHGoogle Scholar
  25. 25.
    Kuroda, S.T.: An Introduction to Scattering Theory. Vol. 51 of Lecture Notes Series, Aarhus Universitet, Matematisk Institut, Aarhus (1978)Google Scholar
  26. 26.
    Posilicano, A.: A Kreĭn-like formula for singular perturbations of self-adjoint operators and applications. J. Funct. Anal. 183, 109–147 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Reed, M., Simon, B.: Methods of Modern Mathematical physics. III. Academic Press (Harcourt Brace Jovanovich, Publishers), New York-London (1979). Scattering theoryzbMATHGoogle Scholar
  28. 28.
    Scarlatti, S., Teta, A.: Derivation of the time-dependent propagator for the three-dimensional Schrödinger equation with one-point interaction. J. Phys. A 23, L1033–L1035 (1990)ADSCrossRefzbMATHGoogle Scholar
  29. 29.
    Stein, E.M.: Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals. Vol. 43 of Princeton Mathematical Series, Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy, Monographs in Harmonic Analysis, IIIGoogle Scholar
  30. 30.
    Weder, R.: \(L^p\)-\(L^{\dot{p}}\) estimates for the Schrödinger equation on the line and inverse scattering for the nonlinear Schrödinger equation with a potential. J. Funct. Anal. 170, 37–68 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Yajima, K.: Existence of solutions for Schrödinger evolution equations. Commun. Math. Phys. 110, 415–426 (1987)ADSCrossRefzbMATHGoogle Scholar
  32. 32.
    Yajima, K.: The \(W^{k, p}\)-continuity of wave operators for Schrödinger operators. J. Math. Soc. Jpn. 47, 551–581 (1995)CrossRefzbMATHGoogle Scholar
  33. 33.
    Yajima, K.: \(L^p\)-boundedness of wave operators for two-dimensional Schrödinger operators. Commun. Math. Phys. 208, 125–152 (1999)ADSCrossRefzbMATHGoogle Scholar
  34. 34.
    Yajima, K.: Dispersive estimates for Schrödinger equations with threshold resonance and eigenvalue. Commun. Math. Phys. 259, 475–509 (2005)ADSCrossRefzbMATHGoogle Scholar
  35. 35.
    Yajima, K.: Remarks on \(L^p\)-boundedness of wave operators for Schrödinger operators with threshold singularities. Doc. Math. 21, 391–443 (2016)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Yajima, K.: On wave operators for Schrödinger operators with threshold singuralities in three dimensions. To appear in Tokyo J. Math. arXiv:1606.03575 (2016)
  37. 37.
    Zorbas, J.: Perturbation of self-adjoint operators by Dirac distributions. J. Math. Phys. 21, 840–847 (1980)ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • Gianfausto Dell’Antonio
    • 1
    • 2
  • Alessandro Michelangeli
    • 2
  • Raffaele Scandone
    • 2
  • Kenji Yajima
    • 3
    Email author
  1. 1.Department of MathematicsUniversity of Rome La SapienzaRomeItaly
  2. 2.SISSA - International School for Advanced StudiesTriesteItaly
  3. 3.Department of MathematicsGakushuin UniversityTokyoJapan

Personalised recommendations