Annales Henri Poincaré

, Volume 18, Issue 8, pp 2621–2639 | Cite as

Inverse Scattering on the Half-Line for a First-Order System with a General Boundary Condition

  • Mansur I. IsmailovEmail author


The inverse scattering problem of recovering the matrix coefficient of a first-order system on the half-line from its scattering matrix is considered. In the case of a triangular structure of the matrix coefficient, this system has a Volterra-type integral transformation operator at infinity. Such a transformation operator allows to determine the scattering matrix on the half-line via the matrix Riemann–Hilbert factorization in the case, where the contour is real line, the normalization is canonical, and all the partial indices are zero. The ISP on the half-line is solved by reducing it to an ISP on the whole line for the considered system with the coefficients that are extended to the whole line by zero.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gasymov, M.G., Levitan, B.M.: The inverse problem for a Dirac system. Dokl. Akad. Nauk SSSR 167, 967–970 (1966); English transl. in Soviet Math. Dokl. 7, 495–499 (1966)Google Scholar
  2. 2.
    Gasymov, M.G.: The inverse scattering problem for a system of Dirac equations of order 2n. Trudy Moscov. Mat. Obşç. 19, 41–112 (1968) (in Russian); English trans. Moscow Math. Soc. 19, 41–119 (1968)Google Scholar
  3. 3.
    Levitan, B.M., Sargsjan, I.S.: Sturm–Liouville and Dirac operators. Nauka, Moscow (1988); English transl., Kluwer, Dordrecht (1991)Google Scholar
  4. 4.
    Nizhnik, L.P., Vu, P.L.: An inverse scattering problem on the semi-axis with a nonselfadjoint potential matrix. Ukrain. Mat. Z. 26, 469–486 (1974) (in Russian); Ukrainian Math. J. 26, 384–398 (1975)Google Scholar
  5. 5.
    Sakhnovich, L.A.: Spectral Theory of Canonical Differential Systems. Method of Operator Identities. Birkhäuser, Basel (1999)CrossRefzbMATHGoogle Scholar
  6. 6.
    Alpay, D., Gohberg, I., Kaashoek, M.A., Sakhnovich, A.L.: Direct and inverse scattering problem for canonical systems with a strictly pseudoexponential potential. Math. Nachr. 215, 5–31 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Arov, D.Z., Dym, G.: Direct and inverse asymptotic scattering problems for Dirac-Krein systems. Funktsional. Anal. i Prilozhen. 41 no. 3, 17–33, 96 (2007) (in Russian); English translation. Funct. Anal. Appl. 41(3), 181–195 (2007)Google Scholar
  8. 8.
    Demontis, F., van der Mee, C.: Scattering operators for matrix Zakharov–Shabat systems. Integral Equ. Oper. Theory 62(4), 517–540 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Demontis, F., van der Mee, C.: Characterization of scattering data for the AKNS system. Acta Appl. Math. 131, 27–49 (2014)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Hryniv, R.O., Manko, S.S.: Inverse scattering on the half-line for ZS-AKNS systems with integrable potential. Integral Equ. Oper. Theory 84, 323–355 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Marchenko, V.A.: Sturm–Liouville Operators and Applications. AMS, Washington, DC (2011)CrossRefzbMATHGoogle Scholar
  12. 12.
    Levitan, B.M.: Inverse Sturm–Liouville problems. VNU Science Press, Utrecht (1987)zbMATHGoogle Scholar
  13. 13.
    Freiling, G., Yurko, V.A.: Inverse Sturm–Liouville Problems and Their Applications. NOVA Science Publ, New York (2001)zbMATHGoogle Scholar
  14. 14.
    Novikov, S.P., Manakov, S.V., Pitaievski, L.P., Zakharov, V.E.: Theory of Solitons. The Inverse Scattering Method. Plenum, New York (1984)Google Scholar
  15. 15.
    Shabat, A.B.: An inverse scattering problem. Diff. Uravn. 15(3), 1824–1834 (1979) (in Russian); Diff. Equ. 15(3), 1299–1307 (1980)Google Scholar
  16. 16.
    Shabat, A.B.: The inverse scattering problem for a system of differential equations. Funct. Anal. Appl. 9(3), 75–78 (1975). (in Russian)MathSciNetGoogle Scholar
  17. 17.
    Beals, R., Coifman, R.R.: Scattering and inverse scattering for first order systems. Comm. Pure Appl. Math. 37(1), 39–90 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Zhou, X.: Direct and inverse scattering transforms with arbitrary spectral singularities. Commun. Pure Appl. Math. 42(4), 895–938 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Beals, R., Dieft, P., Zhou, X.: The inverse scattering transform on the line. In: Important Developments in Soliton Theory, Springer Ser. Nonlinear Dynam., pp. 7–32. Springer, Berlin (1993)Google Scholar
  20. 20.
    Nizhnik, L.P., Iskenderov, N.Sh.: An inverse nonstationary scattering for a hyperbolic system of three first order equations on the half-axis. Ukrain. Mat. Z. 42(7), 931–938 (1990) (in Russian); Ukrainian Math. J. 42(7), 825–832 (1991)Google Scholar
  21. 21.
    Lesch, M., Malamud, M.M.: The inverse spectral problem for first order systems on the half line. Oper. Theory: Adv. Appl. 117, 199–238 (2000)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Malamud, M.M.: Uniqueness questions in inverse problems for systems of differential equations on a finite interval. Trudy Moskov. Mat. Obshch. 60, 199–258 (1999); English transl. in Trans. Moscow Math. Soc. 173–224 (1999)Google Scholar
  23. 23.
    Yurko, V.A.: On the reconstruction of nonselfadjoint differential systems on the half-axis from the Weyl matrix. Mat Zametki, 76 no. 2, 316–320 (2004) (in Russian); Math. Notes 76, no. 1-2, 296–302 (2004)Google Scholar
  24. 24.
    Yurko, V. A.: An inverse spectral problem for singular non-self-adjoint differential systems. Mat. Sb. 195(12), 123–156 (2004); English transl. in Sb. Math. 195(12), 1823–1854 (2004)Google Scholar
  25. 25.
    Nizhnik, L.P.: Inverse Scattering Problems for Hyperbolic Equations. Nauk. Dumka, Kiev (1991). (in Russian)zbMATHGoogle Scholar
  26. 26.
    Romanov, V.G.: Inverse problems in mathematical physics. Nauka, Moscow 1984; English transl., VNU, Utrecht (1987)Google Scholar
  27. 27.
    Ismailov, M.I.: Inverse scattering problem for hyperbolic systems on a semi-axis in the case of equal number of incident and scattered waves. Inverse Probl. 22, 955–974 (2006)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Gerdzhikov, V.S.: On the spectral theory of the integro-differential operator A generating nonlinear evolution equations. Lett. Math. Phys. 6, 315–323 (1982)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Gerdzhikov, V.S., Kulish, P.P.: The generating operator for the n \(\times \) n linear system. Phys. D3: Nonlinear Phenom. 3(3), 549–564 (1981)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Esen, O., Choudhury, A.G., Guha, P., Gumral, H.: Superintegrable cases of four-dimensional dynamical systems. Regular Chaotic Dyn. 21(2), 175–188 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Esen, O., Choudhury, A.G., Guha, P.: Bi-Hamiltonian structures of 3D chaotic dynamical systems. Int. J. Bifurc. Chaos 26, 1650215 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Naimark, M.A.: Investigation of the spectrum and the expansion in eigenfunctions of a non-selfadjoint differential operator of the second order on a semi-axis. Am. Math. Soc. Transl. 16(2), 103–193 (1960)MathSciNetGoogle Scholar
  33. 33.
    Lyance, V.E.: An analog of the inverse problem of scattering theory for a non-selfadjoint operator. Math USSR Sb 1(4), 485–504 (1967)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Sergent, P., Coudray, C.: The inverse problem at fixed energy for finite range complex potentials. Ann. Inst. H. Poincaré Sect. A 29(2), 179–205 (1978)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Coz, M., Rochus, P.: Extension of the Marchenko equation to non-Hermitian differential systems. Ann. Phys. 126(2), 460–499 (1980)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Coddington, E.A., Levinson, N.: Theory of Ordinary Differential Equations. McGraw-Hill Inc., New York (1987)zbMATHGoogle Scholar
  37. 37.
    Paley, R.C., Wiener, N.: Fourier Transforms in the Complex Domain. American Mathematical Society, New York (1943)zbMATHGoogle Scholar
  38. 38.
    Gohberg, I.T., Krein, M.G.: Systems of integral equations on a half-line with kernel depending upon the difference of the arguments. Amer. Math. Soc. Transl. 14(2), 217–287 (1960)MathSciNetGoogle Scholar
  39. 39.
    Ablowitz, M.J., Fokas, A.S.: Complex Variables: Introduction and Applications. Cambridge University Press, Cambridge (1997)zbMATHGoogle Scholar
  40. 40.
    Zhou, X.: Riemann Hilbert problem and inverse scattering. SIAM J. Math. Anal. 20, 966–986 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Clancey, K.F., Gohberg, I.T.: Factorization of matrix functions and singular integral operators. Operator Theory: Advances and Applications, 3. Birkhäuser Verlag, Basel-Boston (1981)Google Scholar
  42. 42.
    Litvinchuk, G.S., Spitkovskii, I.M.: Factorization of measurable matrix functions. Operator theory: Advances and Applications, 25. Birkhäuser Verlag, Basel-Boston (1987)Google Scholar
  43. 43.
    Sveshnikov, A.G., Tikhonov, A.N.: The Theory of Functions of a Complex Variable. Mir, Moscow (2005)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing 2017

Authors and Affiliations

  1. 1.Gebze Technical UniversityGebzeTurkey
  2. 2.Institute of Mathematics and MechanicsAzerbaijan National Academy of ScienceBakuAzerbaijan

Personalised recommendations