Advertisement

Annales Henri Poincaré

, Volume 18, Issue 9, pp 2831–2847 | Cite as

Decay of Correlations in 2D Quantum Systems with Continuous Symmetry

  • Costanza Benassi
  • Jürg Fröhlich
  • Daniel Ueltschi
Open Access
Article
  • 180 Downloads

Abstract

We study a large class of models of two-dimensional quantum lattice systems with continuous symmetries, and we prove a general McBryan–Spencer–Koma–Tasaki theorem concerning algebraic decay of correlations. We present applications of our main result to the Heisenberg, Hubbard, and t-J models, and to certain models of random loops.

References

  1. 1.
    Aizenman, M., Nachtergaele, B.: Geometric aspects of quantum spin states. Comm. Math. Phys. 164, 17–63 (1994)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bonato, C.A., Fernando Perez, J., Klein, A.: The Mermin–Wagner phenomenon and cluster properties of one- and two-dimensional systems. J. Stat. Phys. 29, 159–175 (1982)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Fisher, M.E., Jasnow, D.: Decay of order in isotropic systems of restricted dimensionality. II. Spin systems. Phys. Rev. B 3, 907–924 (1971)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Fröhlich, J., Pfister, C.-É.: On the absence of spontaneous symmetry breaking and of crystalline ordering in two-dimensional systems. Commun. Math. Phys. 81, 277–298 (1981)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Fröhlich, J., Pfister, C.-É.: Absence of crystalline ordering in two dimensions. Commun. Math. Phys. 104, 697–700 (1986)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Fröhlich, J., Spencer, T.: The Kosterlitz–Thouless transition in two-dimensional abelian spin systems and the Coulomb gas. Commun. Math. Phys. 81, 527–602 (1981)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    Fröhlich, J., Ueltschi, D.: Some properties of correlations of quantum lattice systems in thermal equilibrium. J. Math. Phys. 56, 053302 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Ito, K.R.: Clustering in low-dimensional \(SO(N)\)-invariant statistical models with long-range interactions. J. Stat. Phys. 29, 747–760 (1982)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Koma, T., Tasaki, H.: Decay of superconducting and magnetic correlations in one-and two-dimensional Hubbard models. Phys. Rev. Lett. 68, 3248–3251 (1992)ADSCrossRefGoogle Scholar
  10. 10.
    Lieb, E. H.: The Hubbard model: some rigorous results and open problems. Adv Dyn Syst Quantum Phys, World Scientific, 173–193 (1995). arXiv:cond-mat/9311033
  11. 11.
    Macris, N., Ruiz, J.: A remark on the decay of superconducting correlations in one- and two-dimensional Hubbard models. J. Stat. Phys. 75, 1179–1184 (1994)ADSCrossRefzbMATHGoogle Scholar
  12. 12.
    McBryan, O.A., Spencer, T.: On the decay of correlations in \(SO(n)\)-symmetric ferromagnets. Commun. Math. Phys. 53, 299–302 (1977)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Mermin, N.D., Wagner, H.: Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett. 17, 1133–1136 (1966)ADSCrossRefGoogle Scholar
  14. 14.
    Shlosman, S.: Decrease of correlations in two-dimensional models with continuous symmetry group. Teoret. Mat. Fiz. 37, 427–430 (1978)MathSciNetGoogle Scholar
  15. 15.
    Tóth, B.: Improved lower bound on the thermodynamic pressure of the spin \(1/2\) Heisenberg ferromagnet. Lett. Math. Phys. 28, 75–84 (1993)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Ueltschi, D.: Random loop representations for quantum spin systems. J. Math. Phys. 54, 083301 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2017

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Costanza Benassi
    • 1
  • Jürg Fröhlich
    • 2
  • Daniel Ueltschi
    • 1
  1. 1.Department of MathematicsUniversity of WarwickCoventryUK
  2. 2.Institut für Theoretische Physik ETH ZürichZürichSwitzerland

Personalised recommendations