Annales Henri Poincaré

, Volume 18, Issue 9, pp 2831–2847 | Cite as

Decay of Correlations in 2D Quantum Systems with Continuous Symmetry

  • Costanza BenassiEmail author
  • Jürg Fröhlich
  • Daniel Ueltschi
Open Access


We study a large class of models of two-dimensional quantum lattice systems with continuous symmetries, and we prove a general McBryan–Spencer–Koma–Tasaki theorem concerning algebraic decay of correlations. We present applications of our main result to the Heisenberg, Hubbard, and t-J models, and to certain models of random loops.


  1. 1.
    Aizenman, M., Nachtergaele, B.: Geometric aspects of quantum spin states. Comm. Math. Phys. 164, 17–63 (1994)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bonato, C.A., Fernando Perez, J., Klein, A.: The Mermin–Wagner phenomenon and cluster properties of one- and two-dimensional systems. J. Stat. Phys. 29, 159–175 (1982)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Fisher, M.E., Jasnow, D.: Decay of order in isotropic systems of restricted dimensionality. II. Spin systems. Phys. Rev. B 3, 907–924 (1971)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Fröhlich, J., Pfister, C.-É.: On the absence of spontaneous symmetry breaking and of crystalline ordering in two-dimensional systems. Commun. Math. Phys. 81, 277–298 (1981)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Fröhlich, J., Pfister, C.-É.: Absence of crystalline ordering in two dimensions. Commun. Math. Phys. 104, 697–700 (1986)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Fröhlich, J., Spencer, T.: The Kosterlitz–Thouless transition in two-dimensional abelian spin systems and the Coulomb gas. Commun. Math. Phys. 81, 527–602 (1981)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    Fröhlich, J., Ueltschi, D.: Some properties of correlations of quantum lattice systems in thermal equilibrium. J. Math. Phys. 56, 053302 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Ito, K.R.: Clustering in low-dimensional \(SO(N)\)-invariant statistical models with long-range interactions. J. Stat. Phys. 29, 747–760 (1982)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Koma, T., Tasaki, H.: Decay of superconducting and magnetic correlations in one-and two-dimensional Hubbard models. Phys. Rev. Lett. 68, 3248–3251 (1992)ADSCrossRefGoogle Scholar
  10. 10.
    Lieb, E. H.: The Hubbard model: some rigorous results and open problems. Adv Dyn Syst Quantum Phys, World Scientific, 173–193 (1995). arXiv:cond-mat/9311033
  11. 11.
    Macris, N., Ruiz, J.: A remark on the decay of superconducting correlations in one- and two-dimensional Hubbard models. J. Stat. Phys. 75, 1179–1184 (1994)ADSCrossRefzbMATHGoogle Scholar
  12. 12.
    McBryan, O.A., Spencer, T.: On the decay of correlations in \(SO(n)\)-symmetric ferromagnets. Commun. Math. Phys. 53, 299–302 (1977)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Mermin, N.D., Wagner, H.: Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett. 17, 1133–1136 (1966)ADSCrossRefGoogle Scholar
  14. 14.
    Shlosman, S.: Decrease of correlations in two-dimensional models with continuous symmetry group. Teoret. Mat. Fiz. 37, 427–430 (1978)MathSciNetGoogle Scholar
  15. 15.
    Tóth, B.: Improved lower bound on the thermodynamic pressure of the spin \(1/2\) Heisenberg ferromagnet. Lett. Math. Phys. 28, 75–84 (1993)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Ueltschi, D.: Random loop representations for quantum spin systems. J. Math. Phys. 54, 083301 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2017

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Costanza Benassi
    • 1
    Email author
  • Jürg Fröhlich
    • 2
  • Daniel Ueltschi
    • 1
  1. 1.Department of MathematicsUniversity of WarwickCoventryUK
  2. 2.Institut für Theoretische Physik ETH ZürichZürichSwitzerland

Personalised recommendations