Advertisement

Annales Henri Poincaré

, Volume 18, Issue 4, pp 1371–1383 | Cite as

Self-Adjointness of Two-Dimensional Dirac Operators on Domains

  • Rafael D. Benguria
  • Søren Fournais
  • Edgardo Stockmeyer
  • Hanne Van Den Bosch
Article

Abstract

We consider Dirac operators defined on planar domains. For a large class of boundary conditions, we give a direct proof of their self-adjointness in the Sobolev space \(H^1\).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adams, R.A.: Sobolev Spaces, Volume 65 of Pure and Applied Mathematics. Academic Press, New York (1975)Google Scholar
  2. 2.
    Akhmerov, A.R., Beenakker, C.W.J.: Boundary conditions for Dirac fermions on a terminated honeycomb lattice. Phys. Rev. B 77, 085423 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    Beneventano, C.G., Fialkovsky, I., Santangelo, E.M., Vassilevich, D.V.: Charge density and conductivity of disordered Berry–Mondragon graphene nanoribbons. Eur. Phys. J. B 87(3), 1–9 (2014)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Berry, M.V., Mondragon, R.J.: Neutrino billiards: time-reversal symmetry-breaking without magnetic fields. Proc. R. Soc. Lond. Ser. A 412(1842), 53–74 (1987)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Booß-Bavnbek, B., Lesch, M., Zhu, Ch.: The Calderón projection: new definition and applications. J. Geom. Phys. 59(7), 784–826 (2009)ADSMathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Booß-Bavnbek, B., Wojciechowski, K.P.: Elliptic boundary problems for Dirac operators. In: Mathematics Theory & Applications. Birkhäuser Boston Inc, Boston (1993)Google Scholar
  7. 7.
    Brezis, H.: Analyse fonctionnelle. In: Collection Mathématiques Appliquées pour la Maîtrise. Théorie et applications. [Theory and applications]. Masson, Paris (1983)Google Scholar
  8. 8.
    Castro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K.: The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    Freitas, P., Siegl, P.: Spectra of graphene nanoribbons with armchair and zigzag boundary conditions. Rev. Math. Phys. 26(10), 1450018 (2014)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Pommerenke, Ch.: Boundary behaviour of conformal maps. In: Grundlehren der mathematischen Wissenschaften [A Series of Comprehensive Studies in Mathematics]. Springer, Berlin (1991)Google Scholar
  11. 11.
    Prokhorova, M.: The spectral flow for Dirac operators on compact planar domains with local boundary conditions. Commun. Math. Phys. 322(2), 385–414 (2013)ADSMathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Schmidt, K.M.: A remark on boundary value problems for the Dirac operator. Q. J. Math. Oxf. Ser. (2) 46(184), 509–516 (1995)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing 2017

Authors and Affiliations

  • Rafael D. Benguria
    • 1
  • Søren Fournais
    • 2
  • Edgardo Stockmeyer
    • 1
  • Hanne Van Den Bosch
    • 1
  1. 1.Instituto de FísicaPontificia Universidad Católica de ChileSantiagoChile
  2. 2.Department of MathematicsAarhus UniversityAarhusDenmark

Personalised recommendations