Annales Henri Poincaré

, Volume 18, Issue 5, pp 1777–1788 | Cite as

Monotonicity of the Quantum Relative Entropy Under Positive Maps

  • Alexander Müller-Hermes
  • David ReebEmail author


We prove that the quantum relative entropy decreases monotonically under the application of any positive trace-preserving linear map, for underlying separable Hilbert spaces. This answers in the affirmative a natural question that has been open for a long time, as monotonicity had previously only been shown to hold under additional assumptions, such as complete positivity or Schwarz-positivity of the adjoint map. The first step in our proof is to show monotonicity of the sandwiched Renyi divergences under positive trace-preserving maps, extending a proof of the data processing inequality by Beigi (J Math Phys 54:122202, 2013) that is based on complex interpolation techniques. Our result calls into question several measures of non-Markovianity that have been proposed, as these would assess all positive trace-preserving time evolutions as Markovian.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Umegaki, H.: Conditional expectation in an operator algebra, IV (entropy and information). Kodai Math. Sem. Rep. 14, 59–85 (1962)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Stat. 22, 79–86 (1951)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Wehrl, A.: General properties of entropy. Rev. Mod. Phys. 50, 221–260 (1978)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Ohya, M., Petz, D.: Quantum Entropy and Its Use. Springer, Berlin (1993)CrossRefzbMATHGoogle Scholar
  5. 5.
    Lindblad, G.: Completely positive maps and entropy inequalities. Commun. Math. Phys. 40, 147–151 (1975)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  7. 7.
    Stinespring, W.F.: Positive functions on C\(^*\)-algebras. Proc. Am. Math. Soc. 6, 211–216 (1955)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Lieb, E.H., Ruskai, M.B.: Proof of the strong subadditivity of quantum mechanical entropy. J. Math. Phys. 14, 1938–1941 (1973)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Ruskai, M.B.: Inequalities for quantum entropy: a review with conditions for equality. J. Math. Phys. 43, 4358–4375 (2002)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Uhlmann, A.: Relative entropy and the Wigner–Yanase–Dynson–Lieb concavity in an interpolation theory. Commun. Math. Phys. 54, 21–32 (1977)ADSCrossRefzbMATHGoogle Scholar
  11. 11.
    Petz, D.: Monotonicity of the quantum relative entropy revisited. Rev. Math. Phys. 15, 79–91 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Hiai, F., Mosonyi, M., Petz, D., Beny, C.: Quantum \(f\)-divergences and error correction. Rev. Math. Phys. 23, 691–747 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Hayashi, M.: Quantum Information: An Introduction. Springer, Berlin, Heidelberg (2006)zbMATHGoogle Scholar
  14. 14.
    Müller-Hermes, A., Reeb, D., Wolf, M.M.: Positivity of linear maps under tensor powers. J. Math. Phys. 57, 015202 (2016)ADSCrossRefzbMATHGoogle Scholar
  15. 15.
    Beigi, S.: Sandwiched Renyi divergence satisfies data processing inequality. J. Math. Phys. 54, 122202 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Müller-Lennert, M., Dupuis, F., Szehr, O., Fehr, S., Tomamichel, M.: On quantum Renyi entropies: a new generalization and some properties. J. Math. Phys. 54, 122203 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Wilde, M.M., Winter, A., Yang, D.: Strong converse for the classical capacity of entanglement-breaking and Hadamard channels via a sandwiched Renyi relative entropy. Commun. Math. Phys. 331, 593–622 (2014)ADSCrossRefzbMATHGoogle Scholar
  18. 18.
    Weinberg, S.: Lectures on Quantum Mechanics, 2nd edn. Cambridge University Press, Cambridge (2012)CrossRefzbMATHGoogle Scholar
  19. 19.
    Buscemi, F.: On complete positivity, Markovianity, and the quantum data-processing inequality, in the presence of initial system-environment correlations. Phys. Rev. Lett. 113, 140502 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    Rivas, A., Huelga, S.F., Plenio, M.B.: Quantum non-Markovianity: characterization, quantification and detection. Rep. Prog. Phys. 77, 094001 (2014)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    Laine, E.-M., Piilo, J., Breuer, H.-P.: Measures for the non-Markovianity of quantum processes. Phys. Rev. A 81, 062115 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    Devi Usha, A.R., Rajagopal Sudha, A.K.: Open-system quantum dynamics with correlated initial states, not completely positive maps, and non-Markovianity. Phys. Rev. A 83, 022109 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    Wolf, M.M., Cirac, J.I.: Dividing quantum channels. Commun. Math. Phys. 279, 147 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Frank, R.L., Lieb, E.H.: Monotonicity of a relative Renyi entropy. J. Math. Phys. 54, 122201 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Berta, M., Scholz, V.B., Tomamichel, M.: Renyi divergences as weighted non-commutative vector valued \(L_p\)-spaces. arXiv:1608.05317 (2016)
  26. 26.
    Jencova, A.: Renyi relative entropies and noncommutative \(L_p\)-spaces. arXiv:1609.08462 (2016)
  27. 27.
    Bergh, J., Löfström, J.: Interpolation Spaces. Springer, New York (1976)CrossRefzbMATHGoogle Scholar
  28. 28.
    Paulsen, V.: Completely Bounded Maps and Operator Algebras. Cambridge Studies in Advanced Mathematics, Cambridge (2002)zbMATHGoogle Scholar
  29. 29.
    Shirokov, M.E., Holevo, A.S.: On approximation of infinite-dimensional quantum channels. Probl. Inf. Transm. 44, 73–90 (2008)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Holevo, A.S., Shirokov, M.E.: Mutual and coherent information for infinite-dimensional quantum channels. Probl. Inf. Transm. 46, 201–218 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Holevo, A.S.: Quantum Systems, Channels, Information: A Mathematical Introduction. De Gruyter Studies in Mathematical Physics 16 (2012)Google Scholar
  32. 32.
    Lanford, O.E., Robinson, D.W.: Mean entropy of states in quantum-statistical mechanics. J. Math. Phys. 9, 1120–1125 (1968)ADSCrossRefzbMATHGoogle Scholar
  33. 33.
    Lindblad, G.: Expectations and entropy inequalities for finite quantum systems. Commun. Math. Phys. 39, 111–119 (1974)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Lieb, E.H.: Convex trace functions and the Wigner–Yanase–Dyson conjecture. Adv. Math. 11, 267–288 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Davis, C.: A Schwarz inequality for convex operator functions. Proc. Am. Math. Soc. 8, 42–44 (1957)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Alberti, P.M., Uhlmann, A.: Stochasticity and Partial Order. D. Reidel Publishing Companing, Dordrecht (1982)zbMATHGoogle Scholar
  37. 37.
    Mosonyi, M., Ogawa, T.: Quantum hypothesis testing and the operational interpretation of the quantum Renyi relative entropies. Commun. Math. Phys. 334, 1617–1648 (2015)ADSCrossRefzbMATHGoogle Scholar
  38. 38.
    Berta, M., Fawzi, O., Tomamichel, M.: On variational expressions for quantum relative entropies. arXiv:1512.02615 [quant-ph] (2015)
  39. 39.
    Petz, D.: Monotone metrics on matrix spaces. Linear Algebra Appl. 244, 81–96 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Petz, D.: Sufficiency of channels over von Neumann algebras. Q. J. Math. Oxf. 39, 97–108 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Hiai, F., Mosonyi, M.: Reversibility of stochastic maps via quantum divergences. arXiv:1604.03089 (2016)
  42. 42.
    Jencova, A.: Preservation of a quantum Renyi relative entropy implies existence of a recovery map. arXiv:1604.02831 (2016)
  43. 43.
    Leditzky, F., Rouze, C., Datta, N.: Data processing for the sandwiched Renyi divergence: a condition for equality. arXiv:1604.02119 (2016)
  44. 44.
    Junge, M., Renner, R., Sutter, D., Wilde, M.M., Winter, A.: Universal recovery from a decrease of quantum relative entropy. arXiv:1509.07127 (2015)
  45. 45.
    Sutter, D., Berta, M., Tomamichel, M.: Multivariate trace inequalities. arXiv:1604.03023 (2016)
  46. 46.
    Sutter, D., Tomamichel, M., Harrow, A.W.: Strengthened monotonicity of relative entropy via pinched Petz recovery map. IEEE Trans. Inf. Theory 62, 2907–2913 (2016)MathSciNetCrossRefGoogle Scholar
  47. 47.
    Wilde, M.M.: Recoverability in quantum information theory. Proc. R. Soc. A 471, 20150338 (2015)ADSMathSciNetCrossRefGoogle Scholar
  48. 48.
    Buscemi, F., Das, S., Wilde, M.M.: Approximate reversibility in the context of entropy gain, information gain, and complete positivity. Phys. Rev. A 93, 062314 (2016)ADSCrossRefGoogle Scholar
  49. 49.
    Uhlmann, A.: Markov master equation and the behaviour of some entropy-like quantities. Rostock. Phys. Manuskr. 2, 45–54 (1977)MathSciNetGoogle Scholar

Copyright information

© Springer International Publishing 2017

Authors and Affiliations

  1. 1.QMATH, Department of Mathematical SciencesUniversity of CopenhagenCopenhagenDenmark
  2. 2.Institute for Theoretical PhysicsLeibniz Universität HannoverHannoverGermany

Personalised recommendations