Annales Henri Poincaré

, Volume 18, Issue 4, pp 1153–1184 | Cite as

Ancilla Dimension in Quantum Channel Discrimination

Article

Abstract

Single-shot quantum channel discrimination is a fundamental task in quantum information theory. It is well known that entanglement with an ancillary system can help in this task, and, furthermore, that an ancilla with the same dimension as the input of the channels is always sufficient for optimal discrimination of two channels. A natural question to ask is whether the same holds true for the output dimension. That is, in cases when the output dimension of the channels is (possibly much) smaller than the input dimension, is an ancilla with dimension equal to the output dimension always sufficient for optimal discrimination? We show that the answer to this question is “no” by construction of a family of counterexamples. This family contains instances with arbitrary finite gap between the input and output dimensions, and still has the property that in every case, for optimal discrimination, it is necessary to use an ancilla with dimension equal to that of the input. The proof relies on a characterization of all operators on the trace norm unit sphere that maximize entanglement negativity. In the case of density operators, we generalize this characterization to a broad class of entanglement measures, which we call weak entanglement measures. This characterization allows us to conclude that a quantum channel is reversible if and only if it preserves entanglement as measured by any weak entanglement measure, with the structure of maximally entangled states being equivalent to the structure of reversible maps via the Choi isomorphism. We also include alternate proofs of other known characterizations of channel reversibility.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Acín, A.: Statistical distinguishability between unitary operations. Phys. Rev. Lett. 87(17), 177901 (2001)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    Duan, R., Feng, Y., Ying, M.: Perfect distinguishability of quantum operations. Phys. Rev. Lett. 103(21), 210501 (2009)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Chiribella, G., D’Ariano, G., Perinotti, P.: Memory effects in quantum channel discrimination. Phys. Rev. Lett. 101(18), 180501 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    Harrow, A., Hassidim, A., Leung, D., Watrous, J.: Adaptive versus nonadaptive strategies for quantum channel discrimination. Phys. Rev. A 81(3), 032339 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    Duan, R., Feng, Y., Ying, M.: Local distinguishability of multipartite unitary operations. Phys. Rev. Lett. 100(2), 020503 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    Matthews, W., Piani, M., Watrous, J.: Entanglement in channel discrimination with restricted measurements. Phys. Rev. A 82(3), 032302 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    Hiai, F., Petz, D.: The proper formula for relative entropy and its asymptotics in quantum probability. Commun. Math. Phys. 143(1), 99–114 (1991)ADSMathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Bjelakovic, I., Siegmund-Schultze, R.: Quantum Stein’s lemma revisited, inequalities for quantum entropies, and a concavity theorem of Lieb (2003). arXiv:quant-ph/0307170
  9. 9.
    Granade, C., Combes, J., Cory, D.: Practical Bayesian tomography. New J. Phys. 18(3), 033024 (2016)ADSCrossRefGoogle Scholar
  10. 10.
    Kitaev, A.: Quantum computations: algorithms and error correction. Russ. Math. Surv. 52(6), 1191–1249 (1997)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Kitaev, A., Shen, A., Vyalyi, M.: Classical and Quantum Computation. Graduate Studies in Mathematics, vol. 47. American Mathematical Society (2002)Google Scholar
  12. 12.
    Aharonov, D., Kitaev, A., Nisan, N.: Quantum circuits with mixed states. In: Proceedings of the 30th Annual ACM Symposium on Theory of Computing, pp 20–30 (1998)Google Scholar
  13. 13.
    Childs, A., Preskill, J., Renes, J.: Quantum information and precision measurement. J. Mod. Opt. 47(2–3), 155–176 (2000)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    Sacchi, M.: Optimal discrimination of quantum operations. Phys. Rev. A 71(6), 062340 (2005)ADSCrossRefGoogle Scholar
  15. 15.
    Sacchi, M.: Entanglement can enhance the distinguishability of entanglement-breaking channels. Phys. Rev. A 72(1), 014305 (2005)ADSCrossRefGoogle Scholar
  16. 16.
    Piani, M., Watrous, J.: All entangled states are useful for channel discrimination. Phys. Rev. Lett. 102(25), 250501 (2009)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    Rosgen, B., Watrous, J.: On the hardness of distinguishing mixed-state quantum computations. In: Proceedings of the 20th Annual Conference on Computational Complexity, pp. 344–354 (2005)Google Scholar
  18. 18.
    Rosgen, B.: Additivity and distinguishability of random unitary channels. J. Math. Phys. 49(10), 102107 (2008)ADSMathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Gilchrist, A., Langford, N., Nielsen, M.: Distance measures to compare real and ideal quantum processes. Phys. Rev. A 71(6), 062310 (2005)ADSCrossRefGoogle Scholar
  20. 20.
    Watrous, J.: Distinguishing quantum operations having few Kraus operators. Quantum Inf. Comput. 8(9), 819–833 (2008)MathSciNetMATHGoogle Scholar
  21. 21.
    Watrous, J.: Notes on super-operator norms induced by Schatten norms. Quantum Inf. Comput. 5(1), 58–68 (2005)MathSciNetMATHGoogle Scholar
  22. 22.
    Werner, R., Holevo, A.: Counterexample to an additivity conjecture for output purity of quantum channels. J. Math. Phys. 43(9), 4353–4357 (2002)ADSMathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Watrous, J.: Theory of Quantum Information (2015). https://cs.uwaterloo.ca/~watrous/TQI
  24. 24.
    Haagerup, U.: Injectivity and decomposition of completely bounded maps. In: Araki, H., Moore, C., Stratila, Ş.-V., Voiculescu, D.-V. (eds.) Operator Algebras and their Connections with Topology and Ergodic Theory. Lecture Notes in Mathematics, vol. 1132, pp. 170–222. Springer, Berlin, Heidelberg (1985)Google Scholar
  25. 25.
    Vidal, G., Werner, R.: Computable measure of entanglement. Phys. Rev. A 65(3), 032314 (2002)ADSCrossRefGoogle Scholar
  26. 26.
    Busch, P.: Stochastic Isometries in Quantum Mechanics. Math. Phys. Anal. Geom. 2(1), 83–106 (1999)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Nayak, A., Sen, P.: Invertible quantum operations and perfect encryption of quantum states. Quantum Inf. Comput. 7(1), 103–110 (2007)MathSciNetMATHGoogle Scholar
  28. 28.
    Choi, M.-D.: Completely positive linear maps on complex matrices. Linear Algebra Appl. 10(3), 285–290 (1975)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Helstrom, C.: Detection theory and quantum mechanics. Inf. Control 10(3), 254–291 (1967)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Holevo, A.: An analog of the theory of statistical decisions in noncommutative probability theory. Trans. Mosc. Math. Soc. 26, 133–149 (1972)MATHGoogle Scholar
  31. 31.
    Tomiyama, J.: On the transpose map of matrix algebras. Proc. Am. Math. Soc. 88(4), 635–638 (1983)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Donald, M., Horodecki, M., Rudolph, O.: The uniqueness theorem for entanglement measures. J. Math. Phys. 43(9), 4252–4272 (2002)ADSMathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Shor, P., Smolin, J., Terhal, B.: Nonadditivity of bipartite distillable entanglement follows from a conjecture on bound entangled Werner states. Phys. Rev. Lett. 86(12), 2681–2684 (2001)ADSCrossRefGoogle Scholar
  34. 34.
    Schumacher, B., Nielsen, M.: Quantum data processing and error correction. Phys. Rev. A 54(4), 2629–2635 (1996)ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    Christandl, M., Winter, A.: Squashed entanglement: an additive entanglement measure. J. Math. Phys. 45(3), 829–840 (2004)ADSMathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Tucci, R.: Quantum entanglement and conditional information transmission (1999). arXiv:quant-ph/9909041
  37. 37.
    Brandao, F., Christandl, M., Yard, J.: Faithful squashed entanglement. Commun. Math. Phys. 306(3), 805–830 (2011)ADSMathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Knill, E., Laflamme, R.: Theory of quantum error-correcting codes. Phys. Rev. A 55(2), 900–911 (1997)ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    Molnár, L.: Fidelity preserving maps on density operators. Rep. Math. Phys. 48(3), 299–303 (2001)ADSMathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    Johnston, N.: QETLAB: a MATLAB toolbox for quantum entanglement, version 0.9 (2016). http://qetlab.com
  41. 41.
    Johnston, N.: How to compute hard-to-compute matrix norms [weblog post] (2016). http://www.njohnston.ca/2016/01/
  42. 42.
    Puzzuoli, D.: ancilla_dimension (2016). https://github.com/DanPuzzuoli/ancilla_dimension

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  1. 1.Department of Applied Mathematics and Institute for Quantum ComputingUniversity of WaterlooONCanada
  2. 2.School of Computer Science and Institute for Quantum ComputingUniversity of WaterlooONCanada

Personalised recommendations