Advertisement

Annales Henri Poincaré

, Volume 18, Issue 4, pp 1305–1347 | Cite as

Spectral Theory for Schrödinger Operators with \(\varvec{\delta }\)-Interactions Supported on Curves in \(\varvec{\mathbb {R}^3}\)

  • Jussi Behrndt
  • Rupert L. Frank
  • Christian Kühn
  • Vladimir Lotoreichik
  • Jonathan Rohleder
Open Access
Article

Abstract

The main objective of this paper is to systematically develop a spectral and scattering theory for self-adjoint Schrödinger operators with \(\delta \)-interactions supported on closed curves in \(\mathbb {R}^3\). We provide bounds for the number of negative eigenvalues depending on the geometry of the curve, prove an isoperimetric inequality for the principal eigenvalue, derive Schatten–von Neumann properties for the resolvent difference with the free Laplacian, and establish an explicit representation for the scattering matrix.

References

  1. 1.
    Abramowitz, M., Stegun, I.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. U.S. Government Printing Office, Washington, D.C. (1964)MATHGoogle Scholar
  2. 2.
    Agranovich, M.S.: Elliptic operators on closed manifolds, Partial Differential Equations VI, Encyclopaedia Math. Sci., vol. 63, pp. 1–130. Springer, Berlin (1994)Google Scholar
  3. 3.
    Akhiezer, N.I., Glazman, I.M.: Theory of Linear Operators in Hilbert Space. Dover Publications, USA (1993)MATHGoogle Scholar
  4. 4.
    Albeverio, S., Gesztesy, F., Høegh-Krohn, R., Holden, H.: Solvable Models in Quantum Mechanics. With an Appendix by Pavel Exner. 2nd edn. AMS Chelsea Publishing, Providence (2005)Google Scholar
  5. 5.
    Antoine, J.-P., Gesztesy, F., Shabani, J.: Exactly solvable models of sphere interactions in quantum mechanics. J. Phys. A 20, 3687–3712 (1987)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Baumgärtel, H., Wollenberg, M.: Mathematical Scattering Theory. Akademie-Verlag, Berlin (1983)CrossRefMATHGoogle Scholar
  7. 7.
    Behrndt, J., Langer, M.: Boundary value problems for elliptic partial differential operators on bounded domains. J. Funct. Anal. 243, 536–565 (2007)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Behrndt, J., Langer, M.: Elliptic operators, Dirichlet-to-Neumann maps and quasi boundary triples. Lond. Math. Soc. Lecture Note Series 404, 121–160 (2012)MathSciNetMATHGoogle Scholar
  9. 9.
    Behrndt, J., Langer, M., Lotoreichik, V.: Schrödinger operators with \(\delta \) and \(\delta ^{\prime }\)-potentials supported on hypersurfaces. Ann. Henri Poincaré 14, 385–423 (2013)ADSMathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Behrndt, J., Malamud, M.M., Neidhardt, H.: Scattering matrices and Dirichlet-to-Neumann maps. arXiv:1511.02376
  11. 11.
    Bethe, H., Peierls, R.: Quantum theory of the diplon. Proc. R. Soc. Lond. Ser. A 148, 146–156 (1935)ADSCrossRefMATHGoogle Scholar
  12. 12.
    Bentosela, F., Duclos, P., Exner, P.: Absolute continuity in periodic thin tubes and strongly coupled leaky wires. Lett. Math. Phys. 65, 75–82 (2003)ADSMathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Besov, O.V., Il’in, V.P., Nikol’skii, S.M.: Integral Representations of Functions and Imbedding Theorems, vol. II, Scripta Series in Mathematics, Washington, D.C.: V.H. Winston & Sons. Wiley, New York (1979)Google Scholar
  14. 14.
    Birman, M.Sh., Krein, M.G.: On the theory of wave operators and scattering operators. Sov. Math. Dokl. 3, 740–744 (1962)Google Scholar
  15. 15.
    Birman, M.Sh., Suslina, T.A., Shterenberg, R.G.: Absolute continuity of the two-dimensional Schrödinger operator with delta potential concentrated on a periodic system of curves (Russian). Algebra i Analiz 12, 140–177 (2000) [translation in St. Petersburg Math. J. 12, 983–1012 (2001)]Google Scholar
  16. 16.
    Blagoveščenskii, A.S., Lavrent’ev, K.K.: A three-dimensional Laplace operator with a boundary condition on the real line (in Russian). Vestn. Leningr. Univ. Mat. Mekh. Astron. 1, 9–15 (1977)MATHGoogle Scholar
  17. 17.
    Brasche, J.F., Exner, P., Kuperin, Yu.A., Šeba, P.: Schrödinger operators with singular interactions. J. Math. Anal. Appl. 184, 112–139 (1994)Google Scholar
  18. 18.
    Brasche, J.F., Teta, A.: Spectral analysis and scattering theory for Schrödinger operators with an interaction supported by a regular curve. Ideas and methods in quantum and statistical physics. In memory of Raphael Høegh-Krohn (1938–1988), vol. 2, pp. 197–211. Cambridge University Press, Cambridge (1992)Google Scholar
  19. 19.
    Brummelhuis, R., Duclos, P.: Effective Hamiltonians for atoms in very strong magnetic fields. J. Math. Phys. 47, 032103 (2006)ADSMathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Brüning, J., Geyler, V., Pankrashkin, K.: Spectra of self-adjoint extensions and applications to solvable Schrödinger operators. Rev. Math. Phys. 20, 1–70 (2008)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Corregi, M., Dell’Antonio, G., Finca, D., Michelangeli, A., Teta, A.: Stability for a system of \(N\) fermions plus a different particle with zero-range interactions. Rev. Math. Phys. 24, 1250017 (2012)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Dell’Antonio, G., Figari, R., Teta, A.: Hamiltonians for systems of \(N\) particles interacting through point interactions. Ann. Inst. H. Poincaré Phys. Theor. 60, 253–290 (1994)MathSciNetMATHGoogle Scholar
  23. 23.
    Derkach, V.A., Malamud, M.M.: Generalized resolvents and the boundary value problems for Hermitian operators with gaps. J. Funct. Anal. 95, 1–95 (1991)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Derkach, V.A., Malamud, M.M.: The extension theory of Hermitian operators and the moment problem. J. Math. Sci. (New York) 73, 141–242 (1995)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Exner, P.: An isoperimetric problem for leaky loops and related mean-chrod inequalities. J. Math. Phys. 46, 062105 (2005)ADSMathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Exner, P.: Leaky quantum graphs: a review. Analysis on Graphs and its Applications. Selected papers based on the Isaac Newton Institute for Mathematical Sciences programme, Cambridge, UK, 2007. Proc. Symp. Pure Math. 77, 523–564 (2008)Google Scholar
  27. 27.
    Exner, P., Frank, R.L.: Absolute continuity of the spectrum for periodically modulated leaky wires in \({\mathbb{R}^{3}}\). Ann. Henri Poincaré 8, 241–263 (2007)ADSMathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Exner, P., Harrell, E.M., Loss, M.: Inequalities for means of chords, with application to isoperimetric problems. Lett. Math. Phys. 75, 225–233 (2006)ADSMathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Exner, P., Ichinose, T.: Geometrically induced spectrum in curved leaky wires. J. Phys. A 34, 1439–1450 (2001)ADSMathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Exner, P., Kondej, S.: Curvature-induced bound states for a \(\delta \) interaction supported by a curve in \(\mathbb{R}^3\). Ann. Henri Poincaré 3, 967–981 (2002)ADSMathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Exner, P., Kondej, S.: Strong-coupling asymptotic expansion for Schrödinger operators with a singular interaction supported by a curve in \(\mathbb{R}^3\). Ann. Henri Poincaré 16, 559–582 (2004)MATHGoogle Scholar
  32. 32.
    Exner, P., Kondej, S.: Hiatus perturbation for a singular Schrödinger operator with an interaction supported by a curve in \(\mathbb{R}^{3}\). J. Math. Phys. 49, 032111 (2008)ADSMathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Exner, P., Kondej, S.: Strong coupling asymptotics for Schrödinger operators with an interaction supported by an open arc in three dimensions. Rep. Math. Phys. 77, 1–17 (2016)ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    Exner, P., Kovařík, H.: Quantum Waveguides. Springer, Heidelberg (2015)CrossRefMATHGoogle Scholar
  35. 35.
    Exner, P., Yoshitomi, K.: Band gap of the Schrödinger operator with a strong \(\delta \)-interaction on a periodic curve. Ann. Henri Poincaré 2, 1139–1158 (2001)ADSMathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Exner, P., Yoshitomi, K.: Persistent currents for 2D Schrödinger operator with a strong \(\delta \)-interaction on a loop. J. Phys. A 35, 3479–3487 (2002)ADSMathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Fermi, E.: Sul moto dei neutroni nelle sostanze idrogenate. Ric. Sci. Progr. Tecn. Econom. Naz. 2, 13–52 (1936)MATHGoogle Scholar
  38. 38.
    Gohberg, I.C., Krein, M.G.: Introduction to the Theory of Linear Nonselfadjoint Operators. Transl. Math. Monogr., vol. 18. Amer. Math. Soc., Providence (1969)Google Scholar
  39. 39.
    Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products. Elsevier/Academic Press, Amsterdam (2015)MATHGoogle Scholar
  40. 40.
    Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics. Addison-Wesley Publishing Company, USA (1989)MATHGoogle Scholar
  41. 41.
    Figotin, A., Kuchment, P.: Spectral properties of classical waves in high-contrast periodic media. SIAM J. Appl. Math. 58, 683–702 (1998)MathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    Kato, T.: Perturbation Theory for Linear Operators. Springer, Berlin (1995)MATHGoogle Scholar
  43. 43.
    Kondej, S.: On the eigenvalue problem for self-adjoint operators with singular perturbations. Math. Nachr. 244, 150–169 (2002)MathSciNetCrossRefMATHGoogle Scholar
  44. 44.
    Kondej, S.: Resonances induced by broken symmetry in a system with a singular potential. Ann. Henri Poincaré 13, 1451–1467 (2012)ADSMathSciNetCrossRefMATHGoogle Scholar
  45. 45.
    Kronig, R. de L. Penney, W.: Quantum mechanics of electrons in crystal lattices. Proc. R. Soc. Lond. 130, 499–513 (1931)Google Scholar
  46. 46.
    Kurylev, Y.V.: Boundary conditions on a curve for a three-dimensional Laplace operator (in Russian). Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 78, 112–127 (1978)MathSciNetMATHGoogle Scholar
  47. 47.
    Kurylev, Y.V.: Boundary conditions on curves for the three-dimensional Laplace operator. J. Sov. Math. 22, 1072–1082 (1983)CrossRefMATHGoogle Scholar
  48. 48.
    Lieb, E.H., Liniger, W.: Exact analysis of an interacting Bose gas. I: The general solution and the ground state. Phys. Rev. 130, 1605–1616 (1963)ADSMathSciNetCrossRefMATHGoogle Scholar
  49. 49.
    McLean, W.: Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge (2000)MATHGoogle Scholar
  50. 50.
    Michelangeli, A., Ottolini, A.: On point interaction realised as Ter-Martirosyan–Skornyakov Hamiltonians. arXiv:1606.05222
  51. 51.
    Minlos, R.A.: On point-like interaction between \(n\) fermions and another particle. Moscow Math. J. 11, 113–127 (2011)MathSciNetMATHGoogle Scholar
  52. 52.
    Minlos, R.A., Faddeev, L.D.: On the point interaction for a three-particle system in quantum mechanics. Sov. Phys. Dokl. 6, 1072–1074 (1962)ADSMathSciNetGoogle Scholar
  53. 53.
    Posilicano, A.: A Krein-like formula for singular perturbations of self-adjoint operators and applications. J. Funct. Anal. 183, 109–147 (2001)MathSciNetCrossRefMATHGoogle Scholar
  54. 54.
    Reed, M., Simon, B.: Methods of Modern Mathematical Physics. II. Fourier Analysis, Self-Adjointness. Academic Press, New York (1975)MATHGoogle Scholar
  55. 55.
    Reed, M., Simon, B.: Methods of Modern Mathematical Physics. III. Scattering Theory. Academic Press, New York (1979)MATHGoogle Scholar
  56. 56.
    Rudin, W.: Real and Complex Analysis. McGraw-Hill, New York (1970)MATHGoogle Scholar
  57. 57.
    Shondin, Yu.: On the semiboundedness of delta-perturbations of the Laplacian on curves with angular points. Theor. Math. Phys. 105, 1189–1200 (1995)MathSciNetCrossRefMATHGoogle Scholar
  58. 58.
    Skorniakov, G.V., Ter-Martirosian, K.A.: Three body problem for short range forces. I. Scattering of low energy neutrons by deuterons. Sov. Phys. JETP 4, 648–661 (1956)MathSciNetMATHGoogle Scholar
  59. 59.
    Teta, A.: Quadratic forms for singular perturbations of the Laplacian. Publ. Res. Inst. Math. Sci. 26, 803–817 (1990)MathSciNetCrossRefMATHGoogle Scholar
  60. 60.
    Thomas, L.H.: The interaction between a neutron and a proton and the structure of \(H^3\). Phys. Rev. 47, 903–909 (1935)ADSCrossRefMATHGoogle Scholar
  61. 61.
    Yafaev, D.R.: Mathematical Scattering Theory: General Theory. Translations of Mathematical Monographs, vol. 105. American Mathematical Society, Providence (1992)Google Scholar

Copyright information

© The Author(s) 2016

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Jussi Behrndt
    • 1
  • Rupert L. Frank
    • 2
  • Christian Kühn
    • 1
  • Vladimir Lotoreichik
    • 3
  • Jonathan Rohleder
    • 4
  1. 1.Institut für Numerische MathematikTU GrazGrazAustria
  2. 2.Mathematics 253-37 CaltechPasadenaUSA
  3. 3.Department of Theoretical Physics, Nuclear Physics InstituteCzech Academy of SciencesŘežCzech Republic
  4. 4.Institut für MathematikTU HamburgHamburgGermany

Personalised recommendations