Annales Henri Poincaré

, Volume 18, Issue 3, pp 807–868 | Cite as

The Generalised Principle of Perturbative Agreement and the Thermal Mass

  • Nicolò Drago
  • Thomas-Paul HackEmail author
  • Nicola Pinamonti


The principle of perturbative agreement, as introduced by Hollands and Wald, is a renormalization condition in quantum field theory on curved spacetimes. This principle states that the perturbative and exact constructions of a field theoretic model given by the sum of a free and an exactly tractable interaction Lagrangian should agree. We develop a proof of the validity of this principle in the case of scalar fields and quadratic interactions without derivatives, which differs in strategy from the one given by Hollands and Wald for the case of quadratic interactions encoding a change of metric. Thereby, we profit from the observation that, in the case of quadratic interactions, the composition of the inverse classical Møller map and the quantum Møller map is a contraction exponential of a particular type. Afterwards, we prove a generalisation of the principle of perturbative agreement and show that considering an arbitrary quadratic contribution of a general interaction either as part of the free theory or as part of the perturbation gives equivalent results. Motivated by the thermal mass idea, we use our findings to extend the construction of massive interacting thermal equilibrium states in Minkowski spacetime developed by Fredenhagen and Lindner to the massless case. In passing, we also prove a property of the construction of Fredenhagen and Lindner which was conjectured by these authors.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aste, A.: Resummation of mass terms in perturbative massless quantum field theory. Lett. Math. Phys. 81, 77 (2007). arXiv:hep-th/0703120 [HEP-TH]
  2. 2.
    Bär, C., Ginoux, N., Pfäffle, F.: Wave Equations on Lorentzian Manifolds and Quantization. European Mathematical Society. arXiv:0806.1036 [math] (2007)
  3. 3.
    Bellissard, J.: Quantized fields in interaction with external fields. 1. Exact solutions and perturbative expansions. Commun. Math. Phys. 41, 235 (1975)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Bellissard, J.: Quantized fields in external field. 2. Existence theorems. Commun. Math. Phys. 46, 53 (1976)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics. 2. Equilibrium States. Models in Quantum Statistical Mechanics, p. 518. Springer, New York (1979). (Texts and Monographs In Physics)Google Scholar
  6. 6.
    Brunetti, R., Duetsch, M., Fredenhagen, K.: Perturbative algebraic quantum field theory and the renormalization groups. Adv. Theor. Math. Phys. 13, 1541–1599 (2009). arXiv:0901.2038 [math-ph]
  7. 7.
    Brunetti, R., Fredenhagen, K.: Microlocal analysis and interacting quantum field theories: renormalization on physical backgrounds. Commun. Math. Phys. 208, 623 (2000). arXiv:math-ph/9903028
  8. 8.
    Brunetti, R., Fredenhagen, K.: Quantum field theory on curved backgrounds. In: Lecture Notes in Physics 786, ed., pp. 129–155 Chapter 5. Springer, Berlin (2009)Google Scholar
  9. 9.
    Brunetti, R., Fredenhagen, K., Köhler, M.: The microlocal spectrum condition and Wick polynomials of free fields on curved spacetimes. Commun. Math. Phys. 180, 633 (1996). arXiv:gr-qc/9510056
  10. 10.
    Brunetti, R., Fredenhagen, K., Ribeiro, P.L.: Algebraic structure of classical field theory I: kinematics and linearized dynamics for real scalar fields. arXiv:1209.2148 [math-ph] (2012)
  11. 11.
    Brunetti, R., Fredenhagen, K., Verch, R.: The generally covariant locality principle: a new paradigm for local quantum physics. Commun. Math. Phys. 237, 31 (2003). arXiv:math-ph/0112041
  12. 12.
    Chilian, B., Fredenhagen, K.: The Time slice axiom in perturbative quantum field theory on globally hyperbolic spacetimes. Commun. Math. Phys. 287, 513 (2009). arXiv:0802.1642 [math-ph]
  13. 13.
    Dütsch, M., Fredenhagen, K.: Algebraic quantum field theory, perturbation theory, and the loop expansion. Commun. Math. Phys. 219, 5 (2001). arXiv:hep-th/0001129 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Dütsch, M., Fredenhagen, K., Keller, K.J., Rejzner, K.: Dimensional regularization in position space, and a forest formula for Epstein-Glaser renormalization. J. Math. Phys. 55, 122303 (2014). arXiv:1311.5424 [hep-th]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Epstein, H., Glaser, V.: The role of locality in perturbation theory. Ann. Inst. Henri Poincaré Section A XIX(3), 211 (1973)Google Scholar
  16. 16.
    Fredenhagen, K., Lindner, F.: Construction of KMS states in perturbative QFT and renormalized hamiltonian dynamics. Commun. Math. Phys. 332, 895 (2014). arXiv:1306.6519 [math-ph]
  17. 17.
    Fredenhagen, K., Rejzner, K.: Perturbative algebraic quantum field theory. arXiv:1208.1428 [math-ph] (2012)
  18. 18.
    Fredenhagen, K., Rejzner, K.: Batalin–Vilkovisky formalism in perturbative algebraic quantum field theory. Commun. Math. Phys. 317, 697 (2013). arXiv:1110.5232 [math-ph]
  19. 19.
    Fredenhagen, K., Rejzner, K.: QFT on curved spacetimes: axiomatic framework and examples. arXiv:1412.5125 [math-ph] (2014)
  20. 20.
    Gére, A., Hack, T.-P., Pinamonti, N.: An analytic regularisation scheme on curved spacetimes with applications to cosmological spacetimes. To appear in Class. Quant. Grav., arXiv:1505.00286 [math-ph]
  21. 21.
    Hollands, S., Wald, R.M.: Local Wick polynomials and time ordered products of quantum fields in curved spacetime. Commun. Math. Phys. 223, 289 (2001). arXiv:gr-qc/0103074
  22. 22.
    Hollands, S., Wald, R.M.: Existence of local covariant time ordered products of quantum fields in curved spacetime. Commun. Math. Phys. 231, 309 (2002). arXiv:gr-qc/0111108
  23. 23.
    Hollands, S., Wald, R.M.: Conservation of the stress tensor in perturbative interacting quantum field theory in curved spacetimes. Rev. Math. Phys. 17, 227 (2005). arXiv:gr-qc/0404074
  24. 24.
    Hollands, S.: Renormalized quantum Yang–Mills fields in curved spacetime. Rev. Math. Phys. 20, 1033 (2008). arXiv:0705.3340 [gr-qc]
  25. 25.
    Hollands, S.: Correlators, Feynman diagrams, and quantum no-hair in deSitter spacetime. Commun. Math. Phys. 319, 1 (2013). arXiv:1010.5367 [gr-qc]
  26. 26.
    Hörmander, L.: The Analysis of Linear Partial Differential Operators I, 2nd edn. Springer, Berlin (1989)Google Scholar
  27. 27.
    Lindner, F.: Perturbative algebraic quantum field theory at finite temperature. DESY-THESIS-2013-029Google Scholar
  28. 28.
    Keller, K.J.: Dimensional regularization in position space and a forest formula for regularized Epstein–Glaser renormalization. arXiv:1006.2148 [math-ph] (2010)
  29. 29.
    Khavkine, I.: Characteristics, conal geometry and causality in locally covariant field theory. arXiv:1211.1914 [gr-qc] (2012)
  30. 30.
    Khavkine, I., Moretti, V.: Continuous and analytic dependence is an unnecessary requirement in renormalization of locally covariant QFT. arXiv:1411.1302 [gr-qc] (2014)
  31. 31.
    Radzikowski, M.J.: Micro-local approach to the Hadamard condition in quantum field theory on curved space-time. Commun. Math. Phys. 179, 529 (1996)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Rejzner, K.A.: Batalin–Vilkovisky formalism in locally covariant field theory. arXiv:1111.5130 (2011)
  33. 33.
    Sahlmann, H., Verch, R.: Microlocal spectrum condition and Hadamard form for vector valued quantum fields in curved space–time. Rev. Math. Phys. 13, 1203 (2001). arXiv:math-ph/0008029
  34. 34.
    Steinmann, O.: Perturbation Expansions in Axiomatic Field Theory. Lect. Notes in Phys, vol. 11. Springer, Berlin (1971)Google Scholar
  35. 35.
    Zahn, J.: Locally covariant charged fields and background independence. arXiv:1311.7661 [math-ph] (2013)

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  • Nicolò Drago
    • 1
    • 3
  • Thomas-Paul Hack
    • 2
    Email author
  • Nicola Pinamonti
    • 1
    • 3
  1. 1.Dipartimento di MatematicaUniversità di GenovaGenoaItaly
  2. 2.Institut für Theoretische PhysikUniversität LeipzigLeipzigGermany
  3. 3.Istituto Nazionale di Fisica Nucleare-Sezione di GenovaGenoaItaly

Personalised recommendations