Annales Henri Poincaré

, Volume 17, Issue 12, pp 3321–3360 | Cite as

The NLS Limit for Bosons in a Quantum Waveguide

  • Johannes von Keler
  • Stefan Teufel


We consider a system of N bosons confined to a thin waveguide, i.e. to a region of space within an \({\epsilon}\)-tube around a curve in \({\mathbb{R}^3}\). We show that when taking simultaneously the NLS limit \({N \to \infty}\) and the limit of strong confinement \({\epsilon \to 0}\), the time-evolution of such a system starting in a state close to a Bose–Einstein condensate is approximately captured by a non-linear Schrödinger equation in one dimension. The strength of the non-linearity in this Gross–Pitaevskii type equation depends on the shape of the cross-section of the waveguide, while the “bending” and the “twisting” of the waveguide contribute potential terms. Our analysis is based on an approach to mean-field limits developed by Pickl (On the time-dependent Gross–Pitaevskii-and Hartree equation. arXiv:0808.1178, 2008).


Einstein Condensate Pitaevskii Equation Quantum Waveguide German Science Foundation Einstein Conden 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adami R., Golse F., Teta A.: Rigorous derivation of the cubic NLS in dimension one. J. Stat. Phys. 127(6), 1193–1220 (2007)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Ben Abdallah N., Méhats F., Schmeiser C., Weishäupl R.: The nonlinear Schrödinger equation with a strongly anisotropic harmonic potential. SIAM J. Math. Anal. 37(1), 189–199 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Benedikter N., De Oliveira G., Schlein B.: Quantitative derivation of the Gross–Pitaevskii equation. Commun. Pure Appl. Math. 68(8), 1399–1482 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Benedikter, N., Porta, M., Schlein, B.: Effective evolution equations from quantum dynamics (2015). arXiv:1502.02498
  5. 5.
    Chen X., Holmer J.: On the rigorous derivation of the 2d cubic nonlinear Schrödinger equation from 3d quantum many-body dynamics. Arch. Ration. Mech. Anal. 210(3), 909–954 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Chen, X., Holmer, J.: Focusing quantum many-body dynamics II: the rigorous derivation of the 1d focusing cubic nonlinear Schrödinger equation from 3d (2014). arXiv:1407.8457
  7. 7.
    Erdős L., Schlein B., Yau H.-T.: Derivation of the cubic non-linear Schrödinger equation from quantum dynamics of many-body systems. Invent. Math. 167, 515–614 (2007)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Fortágh J., Zimmermann C.: Magnetic microtraps for ultracold atoms. Rev. Mod. Phys. 79(1), 235–289 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    Golse, F.: On the dynamics of large particle systems in the mean field limit (2013). arXiv:1301.5494
  10. 10.
    Görlitz A., Vogels J.M., Leanhardt A.E., Raman C., Gustavson T.L., Abo-Shaeer J.R., Chikkatur A.P., Gupta S., Inouye S., Rosenband T., Ketterle W.: Realization of Bose–Einstein condensates in lower dimensions. Phys. Rev. Lett. 87, 130402 (2001)CrossRefGoogle Scholar
  11. 11.
    Grillakis M., Machedon M.: Pair excitations and the mean field approximation of interacting Bosons. Commun. Math. Phys. 324, 601–636 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Haag S., Lampart J., Teufel S.: Generalised quantum waveguides. Ann. Henri Poincaré 16, 2535–2568 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Henderson K., Ryu C., MacCormick C., Boshier M.G.: Experimental demonstration of painting arbitrary and dynamic potentials for Bose–Einstein condensates. New J. Phys. 11(4), 043030 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    Knowles A., Pickl P.: Mean-field dynamics: singular potentials and rate of convergence. Commun. Math. Phys. 298(1), 101–138 (2010)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Krejčiřík, D.: Twisting versus bending in quantum waveguides. In: Analysis on Graphs and its Applications: Proceedings of the Symposium on Pure Mathematics, pp. 617–636. American Mathematical Society, Providence (2008)Google Scholar
  16. 16.
    Lampart, J., Teufel, S.: The adiabatic limit of Schrödinger operators on fibre bundles. Math. Ann. (2014). arXiv:1402.0382
  17. 17.
    Lewin M., Nam P.T., Rougerie N.: The mean-field approximation and the non-linear Schrödinger functional for trapped Bose gases. Trans. Am. Math. Soc. 368, 6131–6157 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Lieb E.H., Seiringer R., Solovej J.P., Yngvason J.: The mathematics of the Bose gas and its condensation. In: Oberwolfach Seminars, vol. 34. Birkhäuser, Boston (2005)zbMATHGoogle Scholar
  19. 19.
    Lieb E.H., Seiringer R., Yngvason J.: One-dimensional behaviour of dilute, trapped Bose gases. Commun. Math. Phys. 244(2), 347–393 (2004)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Méhats, F., Raymond, N.: Strong confinement limit for the nonlinear Schrödinger equation constrained on a curve (2014). arXiv:1412.1049
  21. 21.
    Nam, P.T., Rougerie, N., Seiringer, R.: Ground states of large bosonic systems: the Gross–Pitaevskii limit revisited (2015). arXiv:1503.07061
  22. 22.
    Nam, P.T., Napiórkowski, M.: Bogoliubov correction to the mean-field dynamics of interacting bosons (2015). arXiv:1509.04631
  23. 23.
    Pickl, P.: On the time dependent Gross–Pitaevskii-and Hartree equation (2008). arXiv:0808.1178
  24. 24.
    Pickl, P.: Derivation of the time dependent Gross–Pitaevskii equation with external fields. Rev. Math. Phys. 27, 1550003 (2015). arXiv:1001.4894
  25. 25.
    Pickl P.: Derivation of the time dependent Gross–Pitaevskii equation without positivity condition on the interaction. J. Stat. Phys. 140(1), 76–89 (2010)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Pickl P.: A simple derivation of mean field limits for quantum systems. Lett. Math. Phys. 97(2), 151–164 (2011)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Rodnianski I., Schlein B.: Quantum fluctuations and rate of convergence towards mean field dynamics. Commun. Math. Phys. 291(1), 31–61 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Rougerie, N.: De finetti theorems, mean-field limits and Bose–Einstein condensation (2015). arXiv:1506.05263
  29. 29.
    Schnee K., Yngvason J.: Bosons in disc-shaped traps: from 3D to 2D. Commun. Math. Phys. 269(3), 659–691 (2006)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Schlein, B.: Derivation of effective evolution equations from microscopic quantum dynamics (2008). arXiv:0807.4307
  31. 31.
    Sparber C.: Weakly nonlinear time-adiabatic theory. Ann. Henri Poincaré 17(4), 913–936 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Tao, T.: Nonlinear dispersive equations. Local and global analysis. In: CBMS Regional Conference Series in Mathematics, vol. 106. American Mathematical Society (2006)Google Scholar
  33. 33.
    Wachsmuth, J., Teufel, S.: Effective Hamiltonians for constrained quantum systems. Mem. AMS 230(1083) (2014). doi: 10.1090/memo/1083

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  1. 1.Mathematisches InstitutUniversität TübingenTübingenGermany

Personalised recommendations