Advertisement

Annales Henri Poincaré

, Volume 17, Issue 9, pp 2555–2584 | Cite as

Attractors for Damped Quintic Wave Equations in Bounded Domains

  • Varga Kalantarov
  • Anton Savostianov
  • Sergey Zelik
Article

Abstract

The dissipative wave equation with a critical quintic non-linearity in smooth bounded three-dimensional domain is considered. Based on the recent extension of the Strichartz estimates to the case of bounded domains, the existence of a compact global attractor for the solution semigroup of this equation is established. Moreover, the smoothness of the obtained attractor is also shown.

Keywords

Global Attractor Galerkin Approximation Strichartz Estimate Asymptotic Compactness Global Solvability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arrieta J., Carvalho A., Hale J.: A damped hyperbolic equation with critical exponent. Commun. Partial Differ. Equ. 17, 841–866 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Babin A., Vishik M.: Attractors of Evolutionary Equations. North Holland, Amsterdam (1992)zbMATHGoogle Scholar
  3. 3.
    Ball J.: Global attractors for damped semilinear wave equations. Partial differential equations and applications. Discrete Contin. Dyn. Syst. 10(1–2), 31–52 (2004) doi: 10.3934/dcds.2004.10.31 MathSciNetzbMATHGoogle Scholar
  4. 4.
    Blair M., Smith H., Sogge C.: Strichartz estimates for the wave equation on manifolds with boundary. Ann. I. H. Poincaré-AN 26, 1817–1829 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Burq N., Lebeau G., Planchon F.: Global existence for energy critical waves in 3D domains. J. AMS 21(3), 831–845 (2008)ADSMathSciNetzbMATHGoogle Scholar
  6. 6.
    Burq N., Planchon F.: Global existence for energy critical waves in 3-D domains: Neumann boundary conditions. Am. J. Math. 131(6), 1715–1742 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Chepyzhov V., Vishik M.: Attractors for Equations of Mathematical Physics. American Mathematical Society Colloquium Publications, vol. 49. American Mathematical Society, Providence (2002)zbMATHGoogle Scholar
  8. 8.
    Chepyzhov V., Vishik M.: Evolution equations and their trajectory attractors. J. Math. Pures Appl. 76(10), 913–964 (1997) doi: 10.1016/S0021-7824(97)89978-3 MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Feireisl E.: Asymptotic behaviour and attractors for a semilinear damped wave equation with supercritical exponent. Proc. R. Soc. Edinb. Sect. A 125(5), 1051–1062 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Grasselli M., Schimperna G., Zelik S.: On the 2D Cahn–Hilliard equation with inertial term. Commun. Partial Differ. Equ. 34(1–3), 137–170 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Grasselli M., Schimperna G., Segatti A., Zelik S.: On the 3D Cahn–Hilliard equation with inertial term. J. Evol. Equ. 9(2), 371–404 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Grillakis M.: Regularity and asymptotic behaviour of the wave equation with a critical nonlinearity. Ann. Math. (2) 132(3), 485–509 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Hale, J.: Asymptotic behavior of dissipative systems. Mathematical Surveys and Monographs no. 25. Amer. Math. Soc., Providence (1988)Google Scholar
  14. 14.
    Kapitanski, L.: The Cauchy problem for the semilinear wave equation. I. (Russian) Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 163 (1987). Kraev. Zadachi Mat. Fiz. i Smezhn. Vopr. Teor. Funktsii 19, 76–104, 188; translation in J. Soviet Math. 49 no. 5, 1166–1186 (1990)Google Scholar
  15. 15.
    Kapitanski, L.: The Cauchy problem for the semilinear wave equation. II. (Russian) Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 182 (1990). Kraev. Zadachi Mat. Fiz. i Smezh. Voprosy Teor. Funktsii. 21, 38–85, 171; translation in J. Soviet Math. 62 no. 3, 2746–2777 (1992)Google Scholar
  16. 16.
    Kapitanski L.: Global and unique weak solutions of nonlinear wave equations. Math. Res. Lett. 1(2), 211–223 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Kapitanski L.: Minimal compact global attractor for a damped semilinear wave equation. Commun. Partial Differ. Equ. 20(7–8), 1303–1323 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Ladyzhenskaya, O.: Attractors of nonlinear evolution problems with dissipation. (Russian) Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 152 (1986). Kraev. Zadachi Mat. Fiz. i Smezhnye Vopr. Teor. Funktsii 18, 72–85, 182Google Scholar
  19. 19.
    Lions J.: Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Paris (1969)zbMATHGoogle Scholar
  20. 20.
    Masmoudi N., Planchon F.: On uniqueness for the critical wave equation. Commun. Partial Differ. Equ. 31(7–9), 1099–1107 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Miranville, A., Zelik, S.: Attractors for dissipative partial differential equations in bounded and unbounded domains. In: Dafermos, C.M., Pokorny, M. (eds.) Handbook of Differential Equations: Evolutionary Equations, vol. IV, pp. 103–200. Handb. Differ. Equ, Elsevier/North-Holland, Amsterdam (2008)CrossRefGoogle Scholar
  22. 22.
    Moise I., Rosa R., Wang X.: Attractors for non-compact semigroups via energy equations. Nonlinearity 11(5), 1369–1393 (1998) doi: 10.1088/0951-7715/11/5/012 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Pata V., Zelik S.: A remark on the damped wave equation. Commun. Pure Appl. Anal. 5(3), 611–616 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Shatah J., Struwe M.: Regularity results for nonlinear wave equations. Ann. Math. 138(3), 503–518 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Shatah J., Struwe M.: Well-posedness in the energy space for semilinear wave equations with critical growth. Int. Math. Res. Not. 1994(7), 1–7 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Struwe M.: Globally regular solutions to the u 5 Klein–Gordon equation. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 15(3), 495–513 (1988)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Sogge C.: Lectures on Non-linear Wave Equations, 2nd edn. International Press, Boston (2008)zbMATHGoogle Scholar
  28. 28.
    Strauss, W.: Nonlinear Wave Equations. CBMS Regional Conference Series in Mathematics, vol. 73. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI (1989)Google Scholar
  29. 29.
    Tao T.: Non-linear Dispersive Equations: Local and Global Analysis. CBMS Regional Conference Series in Mathematics. AMS, Providence (2006)CrossRefGoogle Scholar
  30. 30.
    Temam R.: Infinite-Dimensional Dynamical Systems in Mechanics and Physics, 2nd edn. Applied Mathematical Sciences, vol. 68. Springer-Verlag, New York (1997)CrossRefGoogle Scholar
  31. 31.
    Zelik S.: Asymptotic regularity of solutions of nonautonomous damped wave equation with a critical growth exponent. Commun. Pure Appl. Anal. 3(4), 921–934 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Zelik S.: Asymptotic regularity of solutions of singularly perturbed damped wave equations with supercritical nonlinearities. Discrete Contin. Dyn. Syst. 11(2–3), 351–392 (2004)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  • Varga Kalantarov
    • 1
  • Anton Savostianov
    • 2
  • Sergey Zelik
    • 2
  1. 1.Department of MathematicsKoç UniversitySariyerTurkey
  2. 2.Department of MathematicsUniversity of SurreyGuildfordUK

Personalised recommendations