Advertisement

Annales Henri Poincaré

, Volume 17, Issue 11, pp 3177–3235 | Cite as

Topological Strings from Quantum Mechanics

  • Alba GrassiEmail author
  • Yasuyuki Hatsuda
  • Marcos Mariño
Article

Abstract

We propose a general correspondence which associates a non-perturbative quantum-mechanical operator to a toric Calabi–Yau manifold, and we conjecture an explicit formula for its spectral determinant in terms of an M-theoretic version of the topological string free energy. As a consequence, we derive an exact quantization condition for the operator spectrum, in terms of the vanishing of a generalized theta function. The perturbative part of this quantization condition is given by the Nekrasov–Shatashvili limit of the refined topological string, but there are non-perturbative corrections determined by the conventional topological string. We analyze in detail the cases of local \({{\mathbb{P}}^2}\), local \({{\mathbb{P}}^1 \times {\mathbb{P}}^1}\) and local \({{\mathbb{F}}_1}\). In all these cases, the predictions for the spectrum agree with the existing numerical results. We also show explicitly that our conjectured spectral determinant leads to the correct spectral traces of the corresponding operators. Physically, our results provide a non-perturbative formulation of topological strings on toric Calabi–Yau manifolds, in which the genus expansion emerges as a ’t Hooft limit of the spectral traces. Since the spectral determinant is an entire function on moduli space, it leads to a background-independent formulation of the theory. Mathematically, our results lead to precise, surprising conjectures relating the spectral theory of functional difference operators to enumerative geometry.

Keywords

Theta Function Topological String ABJM Theory Canonical Partition Function Orbifold Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Aharony O., Bergman O., Jafferis D.L., Maldacena J.: \({N=6}\) superconformal Chern–Simons-matter theories, M2-branes and their gravity duals. JHEP 0810, 091 (2008) arXiv:0806.1218 [hep-th]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Kapustin A., Willett B., Yaakov I.: Exact results for Wilson loops in superconformal Chern–Simons theories with matter. JHEP 1003, 089 (2010) arXiv:0909.4559 [hep-th]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Drukker N., Mariño M., Putrov P.: From weak to strong coupling in ABJM theory. Commun. Math. Phys. 306, 511–563 (2011) arXiv:1007.3837 [hep-th]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Drukker N., Mariño M., Putrov P.: Nonperturbative aspects of ABJM theory. JHEP 1111, 141 (2011) arXiv:1103.4844 [hep-th]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Mariño M., Putrov P.: ABJM theory as a Fermi gas. J. Stat. Mech. 1203, P03001 (2012) arXiv:1110.4066 [hep-th]MathSciNetGoogle Scholar
  6. 6.
    Hatsuda Y., Moriyama S., Okuyama K.: Exact results on the ABJM Fermi gas. JHEP 1210, 020 (2012) arXiv:1207.4283 [hep-th]ADSCrossRefGoogle Scholar
  7. 7.
    Hatsuda Y., Moriyama S., Okuyama K.: Instanton effects in ABJM theory from Fermi gas approach. JHEP 1301, 158 (2013) arXiv:1211.1251 [hep-th]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Calvo F., Mariño M.: Membrane instantons from a semiclassical TBA. JHEP 1305, 006 (2013) arXiv:1212.5118 [hep-th]ADSCrossRefGoogle Scholar
  9. 9.
    Hatsuda Y., Moriyama S., Okuyama K.: Instanton bound states in ABJM theory. JHEP 1305, 054 (2013) arXiv:1301.5184 [hep-th]ADSCrossRefzbMATHGoogle Scholar
  10. 10.
    Hatsuda Y., Mariño M., Moriyama S., Okuyama K.: Non-perturbative effects and the refined topological string. JHEP 1409, 168 (2014) arXiv:1306.1734 [hep-th]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Kallen, J., Mariño, M.: Instanton effects and quantum spectral curves. arXiv:1308.6485 [hep-th]
  12. 12.
    Mariño M., Putrov P.: Exact results in ABJM theory from topological strings. JHEP 1006, 011 (2010) arXiv:0912.3074 [hep-th]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Nekrasov, N.A., Shatashvili, S.L.: Quantization of integrable systems and four dimensional gauge theories. arXiv:0908.4052 [hep-th]
  14. 14.
    Mariño, M.: Topological strings at strong string coupling. Talk given in november 2011 at the Banff workshop. New recursion formulae and integrability for Calabi–Yau spaces. http://www.birs.ca/events/2011/5-day-workshops/11w5114/videos. Accessed 21 Dec 2015
  15. 15.
    Aganagic M., Dijkgraaf R., Klemm A., Mariño M., Vafa C.: Topological strings and integrable hierarchies. Commun. Math. Phys. 261, 451 (2006) arXiv:hep-th/0312085 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Mironov A., Morozov A.: Nekrasov functions and exact Bohr–Zommerfeld integrals. JHEP 1004, 040 (2010) arXiv:0910.5670 [hep-th]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Aganagic M., Cheng M.C.N., Dijkgraaf R., Krefl D., Vafa C.: Quantum geometry of refined topological strings. JHEP 1211, 019 (2012) arXiv:1105.0630 [hep-th]ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    Nekrasov, N., Pestun, V., Shatashvili, S.: Quantum geometry and quiver gauge theories. arXiv:1312.6689 [hep-th]
  19. 19.
    Codesido, S., Grassi, A., Mariño, M.: Exact results in \({N=8}\) Chern–Simons-matter theories and quantum geometry. arXiv:1409.1799 [hep-th]
  20. 20.
    Huang M.X., Wang X.F.: Topological strings and quantum spectral problems. JHEP 1409, 150 (2014) arXiv:1406.6178 [hep-th]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Wang X.F., Wang X., Huang M.X.: A note on instanton effects in ABJM theory. JHEP 1411, 100 (2014) arXiv:1409.4967 [hep-th]ADSCrossRefGoogle Scholar
  22. 22.
    Grassi A., Mariño M., Zakany S.: Resumming the string perturbation series. JHEP 1505, 038 (2015) arXiv:1405.4214 [hep-th]ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    Herzog C.P., Klebanov I.R., Pufu S.S., Tesileanu T.: Multi-matrix models and tri-Sasaki Einstein spaces. Phys. Rev. D 83, 046001 (2011) arXiv:1011.5487 [hep-th]ADSCrossRefGoogle Scholar
  24. 24.
    Klebanov I.R., Tseytlin A.A.: Entropy of near extremal black p-branes. Nucl. Phys. B 475, 164 (1996) arXiv:hep-th/9604089 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Katz S.H., Klemm A., Vafa C.: Geometric engineering of quantum field theories. Nucl. Phys. B 497, 173 (1997) arXiv:hep-th/9609239 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Chiang T.M., Klemm A., Yau S.T., Yau S.T., Yau S.T.: Local mirror symmetry: calculations and interpretations. Adv. Theor. Math. Phys. 3, 495 (1999) arXiv:hep-th/9903053 MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Witten E.: Phases of \({N=2}\) theories in two-dimensions. Nucl. Phys. B 403, 159 (1993) arXiv:hep-th/9301042 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Hori, K., Vafa, C.: Mirror symmetry. arXiv:hep-th/0002222
  29. 29.
    Batyrev V.V.: Dual polyhedra and mirror symmetry for Calabi–Yau hypersurfaces in toric varieties. J. Algebraic Geom. 3, 493 (1994) arXiv:alg-geom/9310003 MathSciNetzbMATHGoogle Scholar
  30. 30.
    Aganagic M., Klemm A., Vafa C.: Disk instantons, mirror symmetry and the duality web. Z. Naturforsch. A 57, 1 (2002) arXiv:hep-th/0105045 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Mariño M.: Open string amplitudes and large order behavior in topological string theory. JHEP 0803, 060 (2008) arXiv:hep-th/0612127 ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    Bouchard V., Klemm A., Mariño M., Pasquetti S.: Remodeling the B-model. Commun. Math. Phys. 287, 117 (2009) arXiv:0709.1453 [hep-th]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Huang M.X., Klemm A., Poretschkin M.: Refined stable pair invariants for E-, M- and \({[p, q]}\)-strings. JHEP 1311, 112 (2013) arXiv:1308.0619 [hep-th]ADSCrossRefzbMATHGoogle Scholar
  34. 34.
    Huang M.X., Klemm A., Reuter J., Schiereck M.: Quantum geometry of del Pezzo surfaces in the Nekrasov–Shatashvili limit. JHEP 1502, 031 (2015) arXiv:1401.4723 [hep-th]ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    Faddeev, L.D., Takhtajan, L.A.: On the spectral theory of one functional-difference operator from conformal field theory. arXiv:1408.0307 [math.SP]
  36. 36.
    Grassi, A., Kallen, J., Mariño, M.: UnpublishedGoogle Scholar
  37. 37.
    Santamaria R.C., Mariño M., Putrov P.: Unquenched flavor and tropical geometry in strongly coupled Chern–Simons-matter theories. JHEP 1110, 139 (2011) arXiv:1011.6281 [hep-th]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Kashaev, R., Mariño, M.: Operators from mirror curves and the quantum dilogarithm. arXiv:1501.01014 [hep-th]
  39. 39.
    Voros, A.: Zeta-regularisation for exact-WKB resolution of a general 1D Schrödinger equation. arXiv:1202.3100 [math-ph]
  40. 40.
    Dorey P., Tateo R.: Anharmonic oscillators, the thermodynamic Bethe ansatz, and nonlinear integral equations. J. Phys. A 32, L419 (1999) arXiv:hep-th/9812211 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Cvitanovic, P., et al.: Chaos. Classical and quantum. http://chaosbook.org. Accessed 21 Dec 2015
  42. 42.
    Faddeev L.D., Kashaev R.M.: Quantum dilogarithm. Mod. Phys. Lett. A 9, 427 (1994) arXiv:hep-th/9310070 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Simon B.: Trace Ideals and Their Applications, 2nd edn. American Mathematical Society, Providence (2000)Google Scholar
  44. 44.
    Moriyama S., Nosaka T.: Partition functions of superconformal Chern–Simons theories from Fermi gas approach. JHEP 1411, 164 (2014) arXiv:1407.4268 [hep-th]ADSCrossRefGoogle Scholar
  45. 45.
    Mezei M., Pufu S.S.: Three-sphere free energy for classical gauge groups. JHEP 1402, 037 (2014) arXiv:1312.0920 [hep-th]ADSCrossRefGoogle Scholar
  46. 46.
    Gopakumar, R., Vafa, C.: M theory and topological strings. 2. arXiv:hep-th/9812127
  47. 47.
    Iqbal A., Kozcaz C., Vafa C.: The refined topological vertex. JHEP 0910, 069 (2009) arXiv:hep-th/0701156 ADSMathSciNetCrossRefGoogle Scholar
  48. 48.
    Choi J., Katz S., Klemm A.: The refined BPS index from stable pair invariants. Commun. Math. Phys. 328, 903 (2014) arXiv:1210.4403 [hep-th]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Mariño M.: The uses of Whitham hierarchies. Prog. Theor. Phys. Suppl. 135, 29 (1999) arXiv:hep-th/9905053 ADSMathSciNetCrossRefGoogle Scholar
  50. 50.
    Kallen, J.: The spectral problem of the ABJ Fermi gas. arXiv:1407.0625 [hep-th]
  51. 51.
    Kazakov V.A., Kostov I.K., Nekrasov N.A.: D particles, matrix integrals and KP hierarchy. Nucl. Phys. B 557, 413 (1999) arXiv:hep-th/9810035 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  52. 52.
    Grassi A., Mariño M.: M-theoretic matrix models. JHEP 1502, 115 (2015) arXiv:1403.4276 [hep-th]ADSMathSciNetCrossRefGoogle Scholar
  53. 53.
    Eynard B., Mariño M.: A holomorphic and background independent partition function for matrix models and topological strings. J. Geom. Phys. 61, 1181 (2011) arXiv:0810.4273 [hep-th]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  54. 54.
    Bonnet G., David F., Eynard B.: Breakdown of universality in multicut matrix models. J. Phys. A 33, 6739 (2000) arXiv:cond-mat/0003324 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  55. 55.
    Eynard B.: Large \({N}\) expansion of convergent matrix integrals, holomorphic anomalies, and background independence. JHEP 0903, 003 (2009) arXiv:0802.1788 [math-ph]ADSMathSciNetCrossRefGoogle Scholar
  56. 56.
    Witten, E.: Quantum background independence in string theory. Salamfest 0257–275. arXiv:hep-th/9306122 (1993)
  57. 57.
    Gunaydin M., Neitzke A., Pioline B.: Topological wave functions and heat equations. JHEP 0612, 070 (2006) arXiv:hep-th/0607200 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  58. 58.
    Dijkgraaf, R., Verlinde, E.P., Vonk, M.: On the partition sum of the NS five-brane. arXiv:hep-th/0205281
  59. 59.
    Dijkgraaf, R., Vafa, C., Verlinde, E.: M-theory and a topological string duality. arXiv:hep-th/0602087
  60. 60.
    Haghighat B., Klemm A., Rauch M.: Integrability of the holomorphic anomaly equations. JHEP 0810, 097 (2008) arXiv:0809.1674 [hep-th]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  61. 61.
    Hanada M., Honda M., Honma Y., Nishimura J., Shiba S., Yoshida Y.: Numerical studies of the ABJM theory for arbitrary \({N}\) at arbitrary coupling constant. JHEP 1205, 121 (2012) arXiv:1202.5300 [hep-th]ADSCrossRefGoogle Scholar
  62. 62.
    Hatsuda Y., Okuyama K.: Probing non-perturbative effects in M-theory. JHEP 1410, 158 (2014) arXiv:1407.3786 [hep-th]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  63. 63.
    Huang M.X., Klemm A.: Direct integration for general \({\Omega}\) backgrounds. Adv. Theor. Math. Phys. 16(3), 805 (2012) arXiv:1009.1126 [hep-th]MathSciNetCrossRefzbMATHGoogle Scholar
  64. 64.
    Aspinwall P.S., Greene B.R., Morrison D.R.: Measuring small distances in \({N=2}\) sigma models. Nucl. Phys. B 420, 184 (1994) arXiv:hep-th/9311042 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  65. 65.
    Aganagic M., Bouchard V., Klemm A.: Topological strings and (almost) modular forms. Commun. Math. Phys. 277, 771 (2008) arXiv:hep-th/0607100 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  66. 66.
    Grassi, A., Hatsuda, Y., Mariño, M.: Quantization conditions and functional equations in ABJ(M) theories. arXiv:1410.7658 [hep-th]
  67. 67.
    Sergeev S.M.: Quantization scheme for modular \({q}\)-difference equations. Theor. Math. Phys. 213, 422 (2005) arXiv:nlin/0402008 MathSciNetCrossRefzbMATHGoogle Scholar
  68. 68.
    Matsumoto S., Moriyama S.: ABJ fractional brane from ABJM Wilson loop. JHEP 1403, 079 (2014) arXiv:1310.8051 [hep-th]ADSCrossRefGoogle Scholar
  69. 69.
    Honda M., Okuyama K.: Exact results on ABJ theory and the refined topological string. JHEP 1408, 148 (2014) arXiv:1405.3653 [hep-th]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  70. 70.
    Aganagic M., Klemm A., Mariño M., Vafa C.: Matrix model as a mirror of Chern–Simons theory. JHEP 0402, 010 (2004) arXiv:hep-th/0211098 ADSMathSciNetCrossRefGoogle Scholar
  71. 71.
    Aganagic M., Klemm A., Mariño M., Vafa C.: The topological vertex. Commun. Math. Phys. 254, 425 (2005) arXiv:hep-th/0305132 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  72. 72.
    Santamarí a, R.C., Edelstein, J.D., Schiappa, R., Vonk, M.: Resurgent transseries and the holomorphic anomaly. arXiv:1308.1695 [hep-th]
  73. 73.
    Couso-Santamaría R., Edelstein J.D., Schiappa R., Vonk M.: Resurgent transseries and the holomorphic anomaly: nonperturbative closed strings in local \({\mathbb{C} \mathbb{P}^2}\). Commun. Math. Phys. 338(1), 285 (2015) arXiv:1407.4821 [hep-th]ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  1. 1.Département de Physique Théorique et Section de MathématiquesUniversité de GenèveGenevaSwitzerland
  2. 2.DESY Theory Group, DESY HamburgHamburgGermany

Personalised recommendations