Annales Henri Poincaré

, Volume 17, Issue 8, pp 1937–1954 | Cite as

Semi-Classical Dirac Vacuum Polarisation in a Scalar Field

Article

Abstract

We study vacuum polarisation effects of a Dirac field coupled to an external scalar field and derive a semi-classical expansion of the regularised vacuum energy. The leading order of this expansion is given by a classical formula due to Chin, Lee-Wick and Walecka, for which our result provides the first rigorous proof. We then discuss applications to the non-relativistic large-coupling limit of an interacting system, and to the stability of homogeneous systems.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bach V., Barbaroux J.M., Helffer B., Siedentop H.: On the stability of the relativistic electron-positron field. Commun. Math. Phys. 201, 445–460 (1999)ADSMathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Blunden P.: Evaluation of Dirac sea effects in a finite system. Phys. Rev. C 41(4), 1851 (1990)ADSCrossRefGoogle Scholar
  3. 3.
    Chaix P., Iracane D.: From quantum electrodynamics to mean field theory: I. The Bogoliubov-Dirac-Fock formalism. J. Phys. B 22, 3791–3814 (1989)ADSCrossRefGoogle Scholar
  4. 4.
    Chaix P., Iracane D., Lions P.-L.: From quantum electrodynamics to mean field theory: II. Variational stability of the vacuum of quantum electrodynamics in the mean-field approximation. J. Phys. B 22, 3815–3828 (1989)ADSCrossRefGoogle Scholar
  5. 5.
    Chan L.-H.: Derivative expansion for the one-loop effective actions with internal symmetry. Phys. Rev. Lett. 57(10), 1199 (1986)ADSCrossRefGoogle Scholar
  6. 6.
    Cheyette O.: Derivative expansion of the effective action. Phys. Rev. Lett. 55(22), 2394 (1985)ADSCrossRefGoogle Scholar
  7. 7.
    Chin S.A.: Relativistic many-body studies of high density matter. Phys. Lett. B 62, 263–267 (1976)ADSCrossRefGoogle Scholar
  8. 8.
    Chin S.A.: A relativistic many-body theory of high density matter. Ann. Phys. 108, 301–306 (1977)ADSCrossRefGoogle Scholar
  9. 9.
    Chin S.A., Walecka J.D.: An equation of state for nuclear and higher-density matter based on relativistic mean-field theory. Phys. Lett. B 52, 24–28 (1974)ADSCrossRefGoogle Scholar
  10. 10.
    Dimassi, M., Sjöstrand, J.: Spectral asymptotics in the semi-classical limit, London Mathematical Society Lecture Note Series, vol. 268, Cambridge University Press (1999)Google Scholar
  11. 11.
    Gravejat P., Hainzl C., Lewin M., Séré E.: Construction of the Pauli-Villars-regulated Dirac vacuum in electromagnetic fields. Arch. Ration. Mech. Anal. 208(2), 603–665 (2013)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Gravejat, P., Lewin, M., Séré, E.: Derivation of the magnetic Euler-Heisenberg energy. arXiv:1602.04047 (2016)
  13. 13.
    Hainzl C.: On the vacuum polarization density caused by an external field. Ann. Henri Poincaré 5(6), 1137–1157 (2004)ADSMathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Hainzl C., Lewin M., Séré É.: Existence of a stable polarized vacuum in the Bogoliubov-Dirac-Fock approximation. Commun. Math. Phys. 257(3), 515–562 (2005)ADSMathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Hainzl C., Lewin M., Séré É.: Self-consistent solution for the polarized vacuum in a no-photon QED model. J. Phys. A 38(20), 4483–4499 (2005)ADSMathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Hainzl C., Lewin M., Séré É.: Existence of atoms and molecules in the mean-field approximation of no-photon quantum electrodynamics. Arch. Ration. Mech. Anal. 192(3), 453–499 (2009)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Hainzl C., Lewin M., Solovej J.P.: The mean-field approximation in quantum electrodynamics: the no-photon case. Commun. Pure Appl. Math. 60(4), 546–596 (2007)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Hainzl C., Lewin M., Sparber C.: Existence of global-in-time solutions to a generalized Dirac-Fock type evolution equation. Lett. Math. Phys. 72(2), 99–113 (2005)ADSMathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Hainzl C., Siedentop H.: Non-perturbative mass and charge renormalization in relativistic no-photon quantum electrodynamics. Commun. Math. Phys. 243(2), 241–260 (2003)ADSMathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Heisenberg W., Euler H.: Folgerungen aus der Diracschen Theorie des Positrons. Z. Phys. 98, 714–732 (1936)ADSCrossRefMATHGoogle Scholar
  21. 21.
    Lee T.D., Wick G.C.: Vacuum stability and vacuum excitation in a spin-0 field theory. Phys. Rev. D 9, 2291–2316 (1974)ADSCrossRefGoogle Scholar
  22. 22.
    Lewin, M., Rota Nodari, S.: Uniqueness and non-degeneracy for a nuclear nonlinear Schrödinger equation. Nonlinear Differ. Equ. Appl. 22(4), 673–698 (2015)Google Scholar
  23. 23.
    Perry R.J.: Effects of the Dirac sea on finite nuclei. Phys. Lett. B 182(3), 269–273 (1986)ADSCrossRefGoogle Scholar
  24. 24.
    Reinhard P.G.: The relativistic mean-field description of nuclei and nuclear dynamics. Rep. Prog. Phys. 52(4), 439–514 (1989)ADSCrossRefGoogle Scholar
  25. 25.
    Sabin J.: Global well-posedness for a nonlinear wave equation coupled to the Dirac sea. Appl. Math. Res. Express (AMRX) 2014(2), 312–331 (2014)MathSciNetMATHGoogle Scholar
  26. 26.
    Schwinger J.: On gauge invariance and vacuum polarization. Phys. Rev. 82, 664–679 (1951)ADSMathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Serot, B., Walecka, J.: The relativistic nuclear manybody problem, Advances in Nuclear Physics, vol 16. Plenum, New York, p. 212 (1986)Google Scholar
  28. 28.
    Simon B.: Trace ideals and their applications, London Mathematical Society Lecture Note Series, vol 35. Cambridge University Press, Cambridge (1979)Google Scholar
  29. 29.
    Strauss W.A.: Existence of solitary waves in higher dimensions. Commun. Math. Phys. 55, 149–162 (1977)ADSMathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Walecka, J.D.: Theoretical nuclear and subnuclear physics, 2nd edn. Imperial College Press and World Scientific Publishing Co. Pte. Ltd. (2004)Google Scholar
  31. 31.
    Weisskopf V.: Über die Elektrodynamik des Vakuums auf Grund der Quantentheorie des Elektrons. Math.-Fys. Medd. Danske Vid. Selsk. 16(6), 1–39 (1936)MATHGoogle Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  1. 1.PSL Research University & CEREMADE (UMR CNRS 7534)Paris Cedex 16France
  2. 2.CNRS & CEREMADE (UMR CNRS 7534)Paris Cedex 16France

Personalised recommendations