Annales Henri Poincaré

, Volume 17, Issue 11, pp 3255–3286 | Cite as

Indefinite Kasparov Modules and Pseudo-Riemannian Manifolds

Article

Abstract

We present a definition of indefinite Kasparov modules, a generalisation of unbounded Kasparov modules modelling non-symmetric and non-elliptic (e.g. hyperbolic) operators. Our main theorem shows that to each indefinite Kasparov module we can associate a pair of (genuine) Kasparov modules, and that this process is reversible. We present three examples of our framework: the Dirac operator on a pseudo-Riemannian spin manifold (i.e. a manifold with an indefinite metric); the harmonic oscillator; and the construction via the Kasparov product of an indefinite spectral triple from a family of spectral triples. This last construction corresponds to a foliation of a globally hyperbolic spacetime by spacelike hypersurfaces.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baum H.: Spin-Strukturen und Dirac-Operatoren über pseudo-Riemannschen Mannigfaltigkeiten. Teubner-Texte zur Mathematik, vol. 41. Teubner-Verlag, Leipzig (1981)Google Scholar
  2. 2.
    Bernau S.J.: The square root of a positive self-adjoint operator. J. Aust. Math. Soc. 8, 17–36 (1968)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Bär C., Gauduchon P., Moroianu A.: Generalized cylinders in semi-Riemannian and spin geometry. Math. Z. 249(3), 545–580 (2005)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Baaj S., Julg P.: Théorie bivariante de Kasparov et opérateurs non bornés dans les C*-modules hilbertiens. C. R. Acad. Sci. Paris Sér. I Math. 296, 875–878 (1983)MathSciNetMATHGoogle Scholar
  5. 5.
    Blackadar B.: K-theory for operator algebras. In: Mathematical Sciences Research Institute Publications, 2nd edn. Cambridge University Press, Cambridge (1998)Google Scholar
  6. 6.
    Connes A.: Noncommutative Geometry. Academic Press, San Diego (1994)MATHGoogle Scholar
  7. 7.
    Forsyth I., Mesland B., Rennie A.: Dense domains, symmetric operators and spectral triples. N. Y. J. Math. 20, 1001–1020 (2014)MathSciNetMATHGoogle Scholar
  8. 8.
    Gayral V., Wulkenhaar R.: Spectral geometry of the Moyal plane with harmonic propagation. J. Noncommutative Geom. 7, 939–979 (2013)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Higson N., Roe J.: Analytic K-Homology. Oxford University Press, New York (2000)MATHGoogle Scholar
  10. 10.
    Kasparov G.G.: The operator K-functor and extensions of C*-algebras. Izv. Akad. Nauk SSSR 44, 571–636 (1980)MathSciNetMATHGoogle Scholar
  11. 11.
    Kaad J., Lesch M.: A local global principle for regular operators in Hilbert-modules. J. Funct. Anal. 262(10), 4540–4569 (2012)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Kaad J., Lesch M.: Spectral flow and the unbounded Kasparov product. Adv. Math. 248, 495–530 (2013)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Lance, E.: Hilbert C*-modules: a toolkit for operator algebraists. In: Lecture Note Series: London Mathematical Society. Cambridge University Press, Cambridge (1995)Google Scholar
  14. 14.
    Mesland B.: Unbounded bivariant K-theory and correspondences in noncommutative geometry. J. Reine Angew. Math. 691, 1–244 (2014)MathSciNetMATHGoogle Scholar
  15. 15.
    Plymen R.: Strong Morita equivalence, spinors and symplectic spinors. J. Oper. Theory 16, 305–324 (1986)MathSciNetMATHGoogle Scholar
  16. 16.
    Reed M., Simon B.: Fourier Analysis, Self Adjointness. Methods of Modern Mathematical Physics, vol. II. Academic Press, San Diego (1975)MATHGoogle Scholar
  17. 17.
    Van den Dungen K., Paschke M., Rennie A.: Pseudo-Riemannian spectral triples and the harmonic oscillator. J. Geom. Phys. 73, 37–55 (2013)ADSMathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Wulkenhaar, R.: Non-compact spectral triples with finite volume. In: Blanchard, E., Ellwood, D., Khalkhali, M., Marcolli, M., Moscovici, H., Popa, S. (eds.) Quanta of Maths. Clay Mathematics Proceedings, vol. 10, pp. 617–648. American Mathematical Society, Providence (2010)Google Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  1. 1.Mathematical Sciences InstituteAustralian National UniversityCanberraAustralia
  2. 2.School of Mathematics and Applied StatisticsUniversity of WollongongWollongongAustralia
  3. 3.SISSA (Scuola Internazionale Superiore di Studi Avanzati)TriesteItaly

Personalised recommendations