Annales Henri Poincaré

, Volume 17, Issue 6, pp 1383–1414 | Cite as

Re-Gauging Groupoid, Symmetries and Degeneracies for Graph Hamiltonians and Applications to the Gyroid Wire Network

  • Ralph M. Kaufmann
  • Sergei Khlebnikov
  • Birgit Wehefritz-Kaufmann


We study a class of graph Hamiltonians given by a type of quiver representation to which we can associate (non)-commutative geometries. By selecting gauging data, these geometries are realized by matrices through an explicit construction or a Kan extension. We describe the changes in gauge via the action of a re-gauging groupoid. It acts via matrices that give rise to a noncommutative 2-cocycle and hence to a groupoid extension (gerbe). We furthermore show that automorphisms of the underlying graph of the quiver can be lifted to extended symmetry groups of re-gaugings. In the commutative case, we deduce that the extended symmetries act via a projective representation. This yields isotypical decompositions and super-selection rules. We apply these results to the primitive cubic, diamond, gyroid and honeycomb wire networks using representation theory for projective groups and show that all the degeneracies in the spectra are consequences of these enhanced symmetries. This includes the Dirac points of the G(yroid) and the honeycomb systems.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Urade V.N., Wei T.C., Tate M.P., Hillhouse H.W.: Nanofabrication of double-gyroid thin films. Chem. Mater. 19(4), 768–777 (2007)CrossRefGoogle Scholar
  2. 2.
    Kaufmann R.M., Khlebnikov S., Wehefritz-Kaufmann B.: The geometry of the double gyroid wire network: quantum and classical. J. Noncommut. Geom. 6, 623–664 (2012)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Avron J.E., Raveh A., Zur B.: Adiabatic quantum transport in multiply connected systems. Rev. Mod. Phys. 60, 873 (1988)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Castro Neto A.H., Guinea F., Peres N.M.R., Novoselov K.S., Geim A.K.: The electronic properties of graphene. Rev. Mod. Phys. 81, 109 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    Kaufmann R.M., Khlebnikov S., Wehefritz-Kaufmann B.: Singularities, swallowtails and Dirac points. An analysis for families of Hamiltonians and applications to wire networks, especially the gyroid. Ann. Phys. 327, 2865–2884 (2012)ADSMathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Kaufmann R.M., Khlebnikov S., Wehefritz-Kaufmann B.: The noncommutative geometry of wire networks from triply periodic surfaces. J. Phys. Conf. Ser. 343, 012054 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    Freed D.S., Moore G.W.: Twisted equivariant matter. AHP 14(8), 1927–2023 (2013)MathSciNetMATHGoogle Scholar
  8. 8.
    Bellissard, J.: Gap labelling theorems for Schrödinger operators. In: From Number Theory to Physics, pp. 538–630. Springer, Berlin (1992)Google Scholar
  9. 9.
    Graf, G.M.: Aspects of the integer quantum Hall effect. In: Spectral Theory and Mathematical Physics: A Festschrift in Honor of Barry Simon’s 60th Birthday, pp. 429–442. Proceedings of Symposium in Pure Mathematics, vol. 76, Part 1. American Mathematical Society, Providence (2007)Google Scholar
  10. 10.
    Kotani M., Sunada T.: Standard realizations of crystal lattices via harmonic maps. Trans. AMS 353, 1–20 (2000)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Sunada T.: Lecture on topological crystallography. Jpn. J. Math. 7, 1–39 (2012)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Munkres J.R.: Topology: A First Course. Prentice-Hall, Englewood Cliffs (1975)MATHGoogle Scholar
  13. 13.
    Dedecker P.: Les foncteurs \({Ext_{\Pi}}\), \({\mathbf{H}_{\Pi}^2}\) et \({H_{\Pi}^2}\) non abéliens. C. R. Acad. Sci. Paris 258, 4891–4894 (1964)MathSciNetGoogle Scholar
  14. 14.
    Kurosh, A.G.: The Theory of Groups, vol. II (translated from the Russian and edited by K. A. Hirsch). Chelsea, New York (1956)Google Scholar
  15. 15.
    Serre J.-P.: Cohomologie galoisienne, 5th edn. Lecture Notes in Mathematics, vol. 5. Springer, Berlin (1994)Google Scholar
  16. 16.
    Giraud J.: Cohomologie non-abelienne. Grundlehren der Mathematischen Wissenschaften, vol. 179. Springer, New York (1971)Google Scholar
  17. 17.
    Moerdijk I.: Lie groupoids, gerbes, and non-abelian cohomology. K-Theory 28(3), 207–258 (2003)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Schur I.: Über die Darstellung der symmetrischen und der alternierenden Gruppe durch gebrochene lineare Substitutionen. J. Math. 139, 155–250 (1911)MathSciNetMATHGoogle Scholar
  19. 19.
    Karpilovsky G.: Projective Representations of Finite Groups. Dekker, New York (1985)MATHGoogle Scholar
  20. 20.
    Brown K.S.: Cohomology of groups. Graduate Texts in Mathematics, vol. 87. Springer, Berlin (1972)Google Scholar
  21. 21.
    Schur I.: Untersuchungen über die Darstellung der endlichen Gruppen durch gebrochene lineare Substitutionen. J. Math. 132, 85–137 (1907)MathSciNetMATHGoogle Scholar
  22. 22.
    Berry M.V.: Quantum phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. A 392, 45–57 (1984)ADSCrossRefMATHGoogle Scholar

Copyright information

© Springer Basel 2015

Authors and Affiliations

  • Ralph M. Kaufmann
    • 1
  • Sergei Khlebnikov
    • 2
  • Birgit Wehefritz-Kaufmann
    • 1
    • 2
  1. 1.Department of MathematicsPurdue UniversityWest LafayetteUSA
  2. 2.Department of Physics and AstronomyPurdue UniversityWest LafayetteUSA

Personalised recommendations