Advertisement

Annales Henri Poincaré

, Volume 17, Issue 7, pp 1825–1882 | Cite as

Nonequilibrium Statistical Mechanics of Weakly Stochastically Perturbed System of Oscillators

  • Andrey Dymov
Article

Abstract

We consider a finite region of a d-dimensional lattice, \({d \in \mathbb{N}}\), of weakly coupled harmonic oscillators. The coupling is provided by a nearest-neighbour potential (harmonic or not) of size \({\varepsilon}\). Each oscillator weakly interacts by force of order \({\varepsilon}\) with its own stochastic Langevin thermostat of arbitrary positive temperature. We investigate limiting as \({\varepsilon \rightarrow 0}\) behaviour of solutions of the system and of the local energy of oscillators on long-time intervals of order \({\varepsilon^{-1}}\) and in a stationary regime. We show that it is governed by an effective equation which is a dissipative SDE with nondegenerate diffusion. Next, we assume that the interaction potential is of size \({\varepsilon \lambda}\), where \({\lambda}\) is another small parameter, independent from \({\varepsilon}\). Solutions corresponding to this scaling describe small low temperature oscillations. We prove that in a stationary regime, under the limit \({\varepsilon \rightarrow 0}\), the main order in \({\lambda}\) of the averaged Hamiltonian energy flow is proportional to the gradient of temperature. We show that the coefficient of proportionality, which we call the conductivity, admits a representation through stationary space–time correlations of the energy flow. Most of the results and convergences we obtain are uniform with respect to the number of oscillators in the system.

Keywords

Weak Solution Polynomial Growth Rotation Invariance Uhlenbeck Process Markov Semigroup 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arnold V., Kozlov V.V., Neistadt A.I.: Mathematical Aspects of Classical and Celestial Mechanics, 3rd edn. Springer, Berlin (2006)Google Scholar
  2. 2.
    Basile G., Bernardin C., Olla S.: Thermal conductivity for a momentum conservative model. Commun. Math. Phys. 287, 67–98 (2009)ADSMathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Basile G., Olla S., Spohn H.: Energy transport in stochastically perturbed lattice dynamics. Arch. Rat. Mech. Anal. 195, 171–203 (2010)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Bernardin C., Huveneers F.: Small perturbation of a disordered harmonic chain by a noise and an anharmonic potential. Probab. Theory Relat. Fields 157, 301–331 (2013)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Bernardin C., Huveneers F., Lebowitz J.L., Liverani C., Olla S.: Green–Kubo formula for weakly coupled system with dynamical noise. Commun. Math. Phys. 334, 1377–1412 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Bernardin C., Kannan V., Lebowitz J.L., Lukkarinen J.: Harmonic systems with bulk noises. J. Stat. Phys. 146, 800–831 (2012)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Bernardin C., Olla S.: Fourier’s law for a microscopic model of heat conduction. J. Stat. Phys. 118, 271–289 (2005)ADSMathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Bernardin C., Olla S.: Transport properties of a chain of anharmonic oscillators with random flip of velocities. J. Stat. Phys. 145, 1224–1255 (2011)ADSMathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Bogachev V.I., Krylov N.V., Rockner M.: On regularity of transition probabilities and invariant measures of singular diffusions under minimal conditions. Commun. Partial Differ. Equ. 26, 2037–2080 (2001)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Bonetto F., Lebowitz J.L., Lukkarinen J.: Fourier’s law for a harmonic crystal with self-consistent stochastic reservoirs. J. Stat. Phys. 116, 783–813 (2004)ADSMathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Bonetto F., Lebowitz J.L., Lukkarinen J., Olla S.: Heat conduction and entropy production in anharmonic crystals with self-consistent stochastic reservoirs. J. Stat. Phys. 134, 1097–1119 (2009)ADSMathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Bonetto, F., Lebowitz, J.L., Rey-Bellet, L.: Fourier’s Law: A Challenge to Theorists. Mathematical Physics 2000, pp. 128–150. Imp. Coll. Press, London (2000)Google Scholar
  13. 13.
    Carmona P.: Existence and uniqueness of an invariant measure for a chain of oscillators in contact with two heat baths. Stoch. Process. Appl. 117, 1076–1092 (2007)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Cuneo, N., Eckmann, J.-P.: Non-equilibrium steady states for chains of four rotors. (2015). arXiv:1504.04964
  15. 15.
    Cuneo N., Eckmann J.-P., Poquet C.: Non-equilibrium steady state and subgeometric ergodicity for a chain of three coupled rotors. Nonlinearity 28, 2397–2421 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Dolgopyat D., Liverani C.: Energy transfer in a fast–slow Hamiltonian system. Commun. Math. Phys. 308, 201–225 (2011)ADSMathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Dudley R.M.: Real Analysis and Probability. Cambridge University Press, Cambridge (2002)CrossRefMATHGoogle Scholar
  18. 18.
    Dymov A.V.: Dissipative effects in a linear Lagrangian system with infinitely many degrees of freedom. Izv. Math. 76, 1116–1149 (2012)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Dymov A.: Nonequilibrium statistical mechanics of Hamiltonian rotators with alternated spins. J. Stat. Phys. 158, 968–1006 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Eckmann J.-P., Hairer M.: Non-equilibrium statistical mechanics of strongly anharmonic chains of oscillators. Commun. Math. Phys. 212, 105–164 (2000)ADSMathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Eckmann J.-P., Pillet C.-A., Rey-Bellet L.: Non-equilibrium statistical mechanics of anharmonic chains coupled to two heat baths at different temperatures. Commun. Math. Phys. 201, 657–697 (1999)ADSMathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Freidlin M.I., Wentzell A.D.: Long-time behavior of weakly coupled oscillators. J. Stat. Phys. 123, 1311–1337 (2006)ADSMathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Freidlin M., Wentzell A.: Random Perturbations of Dynamical Systems, 3rd edn. Springer, Berlin, Heidelberg (2012)CrossRefMATHGoogle Scholar
  24. 24.
    Hairer M., Mattingly J.C.: Slow energy dissipation in anharmonic oscillator chains. Commun. Pure Appl. Math. 62, 999–1032 (2009)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Karatzas I., Shreve S.: Brownian Motion and Stochastic Calculus, 2nd edn. Springer, Berlin (1991)MATHGoogle Scholar
  26. 26.
    Khasminskii R.: Stochastic Stability of Differential Equations, 2nd edn. Springer, Berlin (2012)CrossRefMATHGoogle Scholar
  27. 27.
    Kuksin S.B.: Damped-driven KdV and effective equations for long-time behaviour of its solutions. GAFA 20, 1431–1463 (2010)MathSciNetMATHGoogle Scholar
  28. 28.
    Kuksin S.B.: Weakly nonlinear stochastic CGL equations. Ann. IHP PR 49, 1033–1056 (2013)ADSMathSciNetMATHGoogle Scholar
  29. 29.
    Kuksin, S., Maiocchi, A.: Resonant averaging for weakly nonlinear stochastic Schrodinger equations. (2013). arXiv:1309.5022
  30. 30.
    Kuksin S.B., Piatnitski A.L.: Khasminskii–Witham averaging for randomly perturbed KdV equation. J. Math. Pures Appl. 89, 400–428 (2008)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Kuksin S., Shirikyan A.: Mathematics of Two-Dimensional Turbulence. Cambridge University Press, Cambridge (2012)CrossRefMATHGoogle Scholar
  32. 32.
    Lepri S., Livi R., Politi A.: Thermal conduction in classical low-dimensional lattices. Phys. Rep. 377, 1–80 (2003)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    Liverani C., Olla S.: Toward the Fourier law for a weakly interacting anharmonic crystal. AMS 25, 555–583 (2012)MathSciNetMATHGoogle Scholar
  34. 34.
    Mattingly J.C., Stuart A.M., Higham D.J.: Ergodicity for SDEs and approximations: locally Lipschitz vector fields and degenerate noise. Stoch. Process. Appl. 101, 185–232 (2002)MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Øksendal B.: Stochastic Differential Equations. Springer, Berlin (2003)CrossRefMATHGoogle Scholar
  36. 36.
    Peierls, R.: On the Kinetic Theory of Thermal Conduction in Crystals. Selected Scientific Papers of Sir Rudolf Peierls, with Commentary, pp. 15–48. World Scientific, Singapore (1997)Google Scholar
  37. 37.
    Pardoux E., Veretennikov A.Yu.: On the Poisson equation and diffusion approximation I. Ann. Probab. 29, 1061–1085 (2001)MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Rey-Bellet L., Thomas L.E.: Exponential convergence to non-equilibrium stationary states in classical statistical mechanics. Commun. Math. Phys. 225, 305–329 (2002)ADSMathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Rockner M., Schmuland B., Zhang X.: Yamada–Watanabe theorem for stochastic evolution equations in infinite dimensions. Condens. Matter Phys. 11, 247–259 (2008)CrossRefGoogle Scholar
  40. 40.
    Ruelle D.A.: Mechanical model for Fourier’s law of heat conduction. Commun. Math. Phys. 311, 755–768 (2012)ADSMathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    Spohn H.: Large Scale Dynamics of Interacting Particles. Springer, Heidelberg (1991)CrossRefMATHGoogle Scholar
  42. 42.
    Taylor M.E.: Partial Differential Equations I: Basic Theory. Springer, New York (1996)CrossRefMATHGoogle Scholar
  43. 43.
    Treschev D.: Oscillator and thermostat. Discrete Contin. Dyn. Syst. 28, 1693–1712 (2010)MathSciNetCrossRefMATHGoogle Scholar
  44. 44.
    Veretennikov A.: Bounds for the mixing rate in the theory of stochastic equations. Theory Probab. Appl. 32, 273–281 (1987)CrossRefMATHGoogle Scholar
  45. 45.
    Veretennikov A.Yu.: On polynomial mixing bounds for stochastic differential equations. Stoch. Process. Appl. 70, 115–127 (1997)MathSciNetCrossRefMATHGoogle Scholar
  46. 46.
    Yor M.: Existence et unicité de diffusion à valeurs dans un espace de Hilbert. Ann. IHP B 10, 55–88 (1974)MATHGoogle Scholar

Copyright information

© Springer Basel 2015

Authors and Affiliations

  1. 1.Mathematics DepartmentUniversité de Cergy-PontoiseCergy-PontoiseFrance
  2. 2.Steklov Mathematical InstituteMoscowRussia

Personalised recommendations