Advertisement

Annales Henri Poincaré

, Volume 17, Issue 6, pp 1457–1475 | Cite as

Time Flat Surfaces and the Monotonicity of the Spacetime Hawking Mass II

  • Hubert L. Bray
  • Jeffrey L. Jauregui
  • Marc Mars
Article

Abstract

In this sequel paper, we give a shorter, second proof of the monotonicity of the Hawking mass for time flat surfaces under spacelike uniformly area expanding flows in spacetimes that satisfy the dominant energy condition. We also include a third proof which builds on a known formula and describe a class of sufficient conditions of divergence type for the monotonicity of the Hawking mass. These flows of surfaces may have connections to the problem in general relativity of bounding the total mass of a spacetime from below by the quasi-local mass of spacelike 2-surfaces in the spacetime.

Keywords

Fundamental Form Normal Bundle Variation Formula Curvature Vector Round Sphere 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bartnik, R.: Energy in general relativity. In: Yau, S.-T. Tsing-Hua lectures on geometry and analysis, International Press (1997)Google Scholar
  2. 2.
    Bray H., Hayward S., Mars M., Simon W.: Generalized inverse mean curvature flows in spacetime. Comm. Math. Phys. 272(1), 119–138 (2007)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bray H., Jauregui J.: Time flat surfaces and the monotonicity of the spacetime Hawking mass. Comm. Math. Phys. 335(1), 285–307 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Disconzi, M., Khuri, M.: Boundary value problems for stationary vacuum metrics and Bartnik’s quasi-local mass. In: preparationGoogle Scholar
  5. 5.
    Frauendiener J.: On the Penrose inequality. Phys. Rev. Lett. 87(10), 101101,4 (2001)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Geroch R.: Energy extraction. Ann. N.Y. Acad. Sci. 224, 108–117 (1973)ADSCrossRefzbMATHGoogle Scholar
  7. 7.
    Hawking, S.: Gravitational radiation in an expanding universe. J. Math. Phys. 9 (1968)Google Scholar
  8. 8.
    Huisken G., Ilmanen T.: The inverse mean curvature flow and the Riemannian Penrose inequality. J. Differ Geom. 59(3), 353–437 (2001)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Jang P.S., Wald R.: The positive energy conjecture and the cosmic censor hypothesis. J. Math. Phys. 18, 41–44 (1977)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    Malec E., Mars M., Simon W.: On the Penrose inequality for general horizons. Phys. Rev. Lett. 88(12), 121102-1–121102-4 (2012)ADSMathSciNetGoogle Scholar

Copyright information

© Springer Basel 2015

Authors and Affiliations

  • Hubert L. Bray
    • 1
  • Jeffrey L. Jauregui
    • 2
  • Marc Mars
    • 3
  1. 1.Dept. of MathematicsDuke UniversityDurhamUnited States
  2. 2.Department of MathematicsUnion CollegeSchenectadyUSA
  3. 3.Instituto de Física Fundamental y MatematicasUniversidad de SalamancaSalamancaSpain

Personalised recommendations