Advertisement

Annales Henri Poincaré

, Volume 16, Issue 12, pp 2783–2835 | Cite as

Instability of Pre-Existing Resonances Under a Small Constant Electric Field

  • Ira Herbst
  • Juliane Rama
Article

Abstract

Two simple model operators are considered which have pre-existing resonances. A potential corresponding to a small electric field, f, is then introduced and the resonances of the resulting operator are considered as f → 0. It is shown that these resonances are not continuous in this limit. It is conjectured that a similar behavior will appear in more complicated models of atoms and molecules. Numerical results are presented.

Keywords

Entire Function Steep Descent Half Complex Plane Embed Eigenvalue Entire Extension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Avron J.E., Herbst I.W.: Spectral and scattering theory for Schrödinger operators related to the Stark effect. Commun. Math. Phys. 52, 239–254 (1977)zbMATHMathSciNetCrossRefADSGoogle Scholar
  2. 2.
    Aguilar J., Combes J.M.: A class of analytic perturbations for one-body Schrödinger Hamiltonians. Commun. Math. Phys. 22, 269–279 (1971)zbMATHMathSciNetCrossRefADSGoogle Scholar
  3. 3.
    Arnold V.I.: Mathematical Methods of Classical Mechanics. Graduate Texts in Mathematics 60. Springer, New York (1978)CrossRefGoogle Scholar
  4. 4.
    Bak J., Newman D.J.: Complex Analysis. 3rd edition, Undergraduate Texts in Mathematics. Springer, New York (2010)Google Scholar
  5. 5.
    Cerjan C., Reinhardt W.P., Avron J.E.: Spectra of atomic Hamiltonians in DC fields: Use of the numerical range to investigate the effect of a dilatation transformation. J. Phys. B: At. Mol. Phys. 11, L201–L205 (1978)CrossRefADSGoogle Scholar
  6. 6.
    Cycon H.L., Froese R.G., Kirsch W., Simon B.: Schrödinger operators with application to quantum mechanics and global geometry, Texts and Monographs in Physics Springer Study Edition. Springer, Berlin (1987)Google Scholar
  7. 7.
    Erdélyi A.: Asymptotic Expansions. Dover Publications, Inc., New York (1956)zbMATHGoogle Scholar
  8. 8.
    Graffi S., Grecchi V.: Resonances in Stark effect and perturbation theory. Commun. Math. Phys. 62(1), 83–96 (1978)MathSciNetCrossRefADSGoogle Scholar
  9. 9.
    Graffi S., Grecchi V.: Resonances in Stark effect of atomic systems. Commun. Math. Phys. 79(1), 91–109 (1981)zbMATHMathSciNetCrossRefADSGoogle Scholar
  10. 10.
    Harrell E., Simon B.: The mathematical theory of resonances whose widths are exponentially small. Duke Math. J. 47(4), 845–902 (1980)zbMATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Herbst I.: Dilation analyticity in constant electric field, I. The two body problem. Commun. Math. Phys. 64, 279–298 (1979)zbMATHMathSciNetCrossRefADSGoogle Scholar
  12. 12.
    Herbst I., Møller J.S., Skibsted E.: Spectral analysis of N-body Stark Hamiltonians. Commun. Math. Phys. 174, 261–294 (1995)zbMATHCrossRefADSGoogle Scholar
  13. 13.
    Herbst I., Simon B.: Dilation analyticity in constant electric field, II. N-body problem, Borel summability. Commun. Math. Phys. 80, 181–216 (1981)zbMATHMathSciNetCrossRefADSGoogle Scholar
  14. 14.
    Herbst I., Simon B.: Stark effect revisited. Phys. Rev. Lett. 41, 67–69 (1978)MathSciNetCrossRefADSGoogle Scholar
  15. 15.
    Hörmander L.: The Analysis of Linear Partial Differential Operators I. Springer Study Edition. Springer, Berlin (1990)CrossRefGoogle Scholar
  16. 16.
    Howland J.S.: Stationary scattering theory for time-dependent Hamiltonians. Math. Ann. 207, 315–335 (1974)zbMATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Nelson E.: Analytic vectors. Ann. Math. 70(3), 572–615 (1959)zbMATHCrossRefGoogle Scholar
  18. 18.
    Olver F.W.J.: Asymptotics and special functions. Academic Press, New York (1974)Google Scholar
  19. 19.
    Reinhardt, W. P.: Complex scaling in atomic physics: a staging ground for experimental mathematics and for extracting physics from otherwise impossible computations. Spectral theory and mathematical physics: a Festschrift in honor of Barry Simon’s 60th birthday. Proc. Sympos. Pure Math., 76, Part 1, Am. Math. Soc., Providence, RI, pp. 357–381, (2007)Google Scholar
  20. 20.
    Reed M., Simon B.: Methods of Modern Mathematical Physics II: Fourier Analysis, Self-Adjointness. Academic Press, New York (1975)zbMATHGoogle Scholar
  21. 21.
    Rudin W.: Real and Complex Analysis. McGraw-Hill International Editions, Singapore (1987)zbMATHGoogle Scholar
  22. 22.
    Simon B.: Resonances and complex scaling: a rigorous overview. Int. J. Quant. Chem. 14, 529–542 (1978)CrossRefADSGoogle Scholar
  23. 23.
    Weidmann J.: Lineare Operatoren in Hilberträumen. B. G. Teubner, Stuttgart (1976)zbMATHGoogle Scholar
  24. 24.
    Yajima K.: Scattering theory for Schrödinger equations with potentials periodic in time. J. Math. Soc. Japan 29(4), 729–743 (1977)zbMATHMathSciNetCrossRefGoogle Scholar
  25. 25.
    Yajima K.: Resonances for the AC-Stark effect. Commun. Math. Phys. 87, 331–352 (1982)zbMATHMathSciNetCrossRefADSGoogle Scholar
  26. 26.
    Yamabe T., Tachibana A., Silverstone H.J.: Theory of the ionization of the hydrogen atom by an external electrostatic field. Phys. Rev. A 16, 877–890 (1977)CrossRefADSGoogle Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of VirginiaCharlottesvilleUSA
  2. 2.Institut für MathematikUniversität PotsdamPotsdamGermany

Personalised recommendations