Advertisement

Annales Henri Poincaré

, Volume 16, Issue 12, pp 2837–2879 | Cite as

Exact Results for a Toy Model Exhibiting Dynamic Criticality

  • David C. Kaspar
  • Muhittin MunganEmail author
Article

Abstract

We discuss a one-dimensional, periodic charge density wave model, and a toy model introduced in Kaspar and Mungan (EPL 103:46002, 2013) which is intended to approximate the former in the case of strong pinning. For both systems an external force may be applied, driving it in one of two (±) directions, and we describe an avalanche algorithm producing an ordered sequence of static configurations leading to the depinning thresholds. For the toy model these threshold configurations are explicit functions of the underlying quenched disorder, as is the threshold-to-threshold evolution via iteration of the algorithm. These explicit descriptions are used to study the law of the random polarization P for the toy model in two cases. Evolving from a macroscopically flat initial state to threshold, we give a scaling limit characterization determines the final value of P. Evolving from (−)-threshold to (+)-threshold, we use an identification with record sequences to study P as a function of the difference between the current force F and the threshold force F th. The results presented are rigorous and give strong evidence that the depinning transition in the toy model is a dynamic critical phenomenon.

Keywords

Sandpile Model Positive Threshold Avalanche Size Threshold Force Functional Renormalization Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Grüner G.: The dynamics of charge-density waves. Rev. Mod. Phys. 60, 1129–1181 (1988)CrossRefADSGoogle Scholar
  2. 2.
    Fisher D.S.: Collective transport in random media: from superconductors to earthquakes. Phys. Rep. 301, 113–150 (1998)CrossRefADSGoogle Scholar
  3. 3.
    Giamarchi T.: Disordered elastic media. In: Meyers, R.A. (eds) Encyclopedia of Complexity and Systems Science, pp. 2019–2038. Springer, New York (2009)CrossRefGoogle Scholar
  4. 4.
    Brazovskii S., Nattermann T.: Pinning and sliding of driven elastic systems: from domain walls to charge density waves. Adv. Phys. 53, 177–252 (2004)CrossRefADSGoogle Scholar
  5. 5.
    Blatter G., Feigel’man M.V., Geshkenbein V.B., Larkin A.I., Vinokur V.M.: Vortices in high-temperature superconductors. Rev. Mod. Phys. 66, 1125–1388 (1994)CrossRefADSGoogle Scholar
  6. 6.
    Wilkinson D., Willemsen J.F.: Invasion percolation: a new form of percolation theory. J. Phys. A: Math. Gen. 16, 3365 (1983)MathSciNetCrossRefADSGoogle Scholar
  7. 7.
    Bouchaud, E., Bouchaud, J.P., Fisher, D.S., Ramanathan, S., Rice, J.R.: Can crack front waves explain the roughness of cracks? J. Mech. Phys. Solids 50, 1703–1725 (2002)Google Scholar
  8. 8.
    Alava M.J., Nukala P.K.V.V., Zapperi S.: Statistical models of fracture. Adv. Phys. 55, 349–476 (2006)CrossRefADSGoogle Scholar
  9. 9.
    Kawamura H., Hatano T., Kato N., Biswas S., Chakrabarti B.K.: Statistical physics of fracture, friction, and earthquakes. Rev. Mod. Phys. 84, 839–884 (2012)CrossRefADSGoogle Scholar
  10. 10.
    Salman O.U., Truskinovsky L.: Minimal integer automaton behind crystal plasticity. Phys. Rev. Lett. 106, 175503 (2011)CrossRefADSGoogle Scholar
  11. 11.
    Salman O.U., Truskinovsky L.: On the critical nature of plastic flow: One and two dimensional models. Int. J. Eng. Sci. 59, 219–254 (2012)CrossRefGoogle Scholar
  12. 12.
    Fisher D.S.: Threshold behavior of charge-density waves pinned by impurities. Phys. Rev. Lett. 50, 1486–1489 (1983)CrossRefADSGoogle Scholar
  13. 13.
    Fisher D.S.: Sliding charge-density waves as a dynamic critical phenomenon. Phys. Rev. B 31, 1396–1427 (1985)CrossRefADSGoogle Scholar
  14. 14.
    Coppersmith S.N.: Phase slips and the instability of the Fukuyama–Lee–Rice model of charge-density waves. Phys. Rev. Lett. 65, 1044–1047 (1990)CrossRefADSGoogle Scholar
  15. 15.
    Coppersmith S.N., Millis A.J.: Diverging strains in the phase-deformation model of sliding charge-density waves. Phys. Rev. B 44, 7799–7807 (1991)CrossRefADSGoogle Scholar
  16. 16.
    Mihaly L., Crommie M., Gruner G.: The dynamics of partially pinned random systems: A computer simulation. EPL (Europhys. Lett.) 4, 103 (1987)CrossRefADSGoogle Scholar
  17. 17.
    Narayan O., Fisher D.S.: Critical behavior of sliding charge-density waves in 4-ε dimensions. Phys. Rev. B 46, 11520–11549 (1992)CrossRefADSGoogle Scholar
  18. 18.
    Le Doussal P., Wiese K.J., Chauve P.: Two-loop functional renormalization group theory of the depinning transition. Phys. Rev. B 66, 174201 (2002)CrossRefADSGoogle Scholar
  19. 19.
    Ertaş D., Kardar M.: Anisotropic scaling in threshold critical dynamics of driven directed lines. Phys. Rev. B 53, 3520–3542 (1996)CrossRefADSGoogle Scholar
  20. 20.
    Littlewood P.B.: Sliding charge-density waves: a numerical study. Phys. Rev. B 33, 6694–6708 (1986)CrossRefADSGoogle Scholar
  21. 21.
    Erzan A., Veermans E., Heijungs R., Pietronero L.: Glassy dynamics of pinned charge-density waves. Phys. Rev. B 41, 11522–11528 (1990)CrossRefADSGoogle Scholar
  22. 22.
    Myers C.R., Sethna J.P.: Collective dynamics in a model of sliding charge-density waves. I. Critical behavior. Phys. Rev. B 47, 11171–11193 (1993)CrossRefADSGoogle Scholar
  23. 23.
    Rosso A., Krauth W.: Roughness at the depinning threshold for a long-range elastic string. Phys. Rev. E 65, 025101 (2002)CrossRefADSGoogle Scholar
  24. 24.
    Jensen H.J.: The fate of the elastic string: roughening near the depinning threshold. J. Phys. A: Math. Gen. 28, 1861 (1995)CrossRefADSzbMATHGoogle Scholar
  25. 25.
    Middleton A.A., Fisher D.S.: Critical behavior of charge-density waves below threshold: numerical and scaling analysis. Phys. Rev. B 47, 3530–3552 (1993)CrossRefADSGoogle Scholar
  26. 26.
    Narayan O., Middleton A.A.: Avalanches and the renormalization group for pinned charge-density waves. Phys. Rev. B. 49, 244–256 (1994)CrossRefADSGoogle Scholar
  27. 27.
    Kaspar D.C., Mungan M.: Subthreshold behavior and avalanches in an exactly solvable charge density wave system. EPL (Europhys. Lett.) 103, 46002 (2013)CrossRefADSGoogle Scholar
  28. 28.
    Fukuyama H., Lee P.A.: Dynamics of the charge-density wave. I. Impurity pinning in a single chain. Phys. Rev. B 17, 535 (1978)CrossRefADSGoogle Scholar
  29. 29.
    Lee P.A., Rice T.M.: Electric field depinning of charge density waves. Phys. Rev. B 19, 3970 (1979)CrossRefADSGoogle Scholar
  30. 30.
    Aubry S.: Exact models with a complete devil’s staircase. J. Phys. C: Solid State Phys. 16, 2497 (1983)CrossRefADSGoogle Scholar
  31. 31.
    Floría L.M., Mazo J.J.: Dissipative dynamics of the Frenkel–Kontorova model. Adv. Phys. 45, 505–598 (1996)CrossRefADSGoogle Scholar
  32. 32.
    Bangert V.: Mather sets for twist maps and geodesics on tori. In: Kirchgraber, U., Walther, H.-O. (eds) Dynamics Reported, vol. 1, pp. 1–56. Wiley, B.G. Teubner, New York (1988)Google Scholar
  33. 33.
    Redig, F.: Mathematical aspects of the abelian sandpile model. In: Bovier, A., Dunlop, F., Van Enter, A., Den Hollander, F., Dalibard, J. (eds.) Mathematical Statistical Physics. Lecture Notes of the Les Houches Summer School 2005, vol. LXXXIII. Elsevier Science (2006)Google Scholar
  34. 34.
    Tang C., Wiesenfeld K., Bak P., Coppersmith S.N., Littlewood P.B.: Phase organization. Phys. Rev. Lett. 58, 1161–1164 (1987)MathSciNetCrossRefADSGoogle Scholar
  35. 35.
    Turcotte D.L.: Self-organized criticality. Rep. Progr. Phys. 62, 1377 (1999)CrossRefADSGoogle Scholar
  36. 36.
    Gabrielov A.: Abelian avalanches and Tutte polynomials. Phys. A: Stat. Mech. Appl. 195, 253–274 (1993)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Paczuski M., Maslov S., Bak P.: Avalanche dynamics in evolution, growth, and depinning models. Phys. Rev. E 53, 414–443 (1996)CrossRefADSGoogle Scholar
  38. 38.
    Bak P., Sneppen K.: Punctuated equilibrium and criticality in a simple model of evolution. Phys. Rev. Lett. 71, 4083–4086 (1993)CrossRefADSGoogle Scholar
  39. 39.
    Zaitsev S.I.: Robin-hood as self-organized criticality. Physica A 189, 411–416 (1992)CrossRefADSGoogle Scholar
  40. 40.
    Ivashkevich E.V., Ktitarev D.V., Priezzhev V.B.: Waves of topplings in an abelian sandpile. Physica A 209, 347–360 (1994)MathSciNetCrossRefADSGoogle Scholar
  41. 41.
    Glick, N.: Breaking records and breaking boards. Am. Math. Mon. 85, 2–26 (1978)Google Scholar
  42. 42.
    Arnold B.C., Balakrishnan N., Nagaraja H.N.: Records. Wiley Series in Probability and Statistics, Wiley, New York (1998)CrossRefzbMATHGoogle Scholar
  43. 43.
    Kallenberg O.: Foundations of Modern Probability Probability and its Applications (New York), 2nd edn. Springer, New York (2002)Google Scholar
  44. 44.
    Weber M.: The supremum of Gaussian processes with a constant variance. Probab. Theory Rel. Fields 81, 585–591 (1989)CrossRefzbMATHGoogle Scholar
  45. 45.
    Adler, R.J.: An Introduction to Continuity, Extrema, and Related Topics for General Gaussian Processes. Institute of Mathematical Statistics Lecture Notes—Monograph Series, 12. Institute of Mathematical Statistics, Hayward (1990)Google Scholar
  46. 46.
    Dhar D.: Self-organized critical state of sandpile automaton models. Phys. Rev. Lett. 64, 1613–1616 (1990)MathSciNetCrossRefADSzbMATHGoogle Scholar
  47. 47.
    Ruelle P., Sen S.: Toppling distributions in one-dimensional abelian sandpiles. J. Phys. A: Math. Gen. 25, L1257 (1992)MathSciNetCrossRefADSzbMATHGoogle Scholar
  48. 48.
    Pruessner, G.: Self-Organized Criticality—Theory, Models and Characterisation. Cambridge University Press, Cambridge (2012)Google Scholar
  49. 49.
    Terzi, M.M.: Hysteretic behaviour of a simple charge density wave system. Master’s thesis, Boğaziçi University, Istanbul (2013)Google Scholar
  50. 50.
    Terzi, M.M., et al.: Hysteresis in an exactly solvable 1d model with a depinning transition (in preparation)Google Scholar
  51. 51.
    Sethna J.P., Dahmen K., Kartha S., Krumhansl J.A., Roberst B.W., Shore J.D.: Hysteresis and hierarchies: dynamics of disorder-driven first-order phase transformations. Phys. Rev. Lett. 70, 3347 (1993)CrossRefADSGoogle Scholar
  52. 52.
    Billingsley P.: Convergence of Probability Measures. Wiley, New York (1968)zbMATHGoogle Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  1. 1.Division of Applied Mathematics, Box FBrown UniversityProvidenceUSA
  2. 2.Physics DepartmentBoğaziçi UniversityBebekTurkey

Personalised recommendations