Spectral Properties of Non-Unitary Band Matrices
Article
First Online:
- 90 Downloads
Abstract
We consider families of random non-unitary contraction operators defined as deformations of CMV matrices which appear naturally in the study of random quantum walks on trees or lattices. We establish several deterministic and almost sure results about the location and nature of the spectrum of such non-normal operators as a function of their parameters. We relate these results to the analysis of certain random quantum walks, the dynamics of which can be studied by means of iterates of such random non-unitary contraction operators.
Keywords
Spectral Property Polar Decomposition Quantum Walk Pure Point Random Quantum
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Download
to read the full article text
References
- 1.Ahlbrecht A., Scholz V.B., Werner A.H.: Disordered quantum walks in one lattice dimension. J. Math. Phys. 52, 102201 (2011)MathSciNetCrossRefADSGoogle Scholar
- 2.Asch J., Bourget O., Joye A.: Localization properties of the Chalker–Coddington model. Ann. H. Poincaré 11, 1341–1373 (2010)zbMATHMathSciNetCrossRefGoogle Scholar
- 3.Bogomolny E.: Asymptotic mean density of sub-unitary ensemble. J. Phys. A 43, 335102 (2010)MathSciNetCrossRefGoogle Scholar
- 4.Blatter G., Browne D.: Zener tunneling and localization in small conducting rings. Phys. Rev. B 37, 3856–3880 (1988)CrossRefADSGoogle Scholar
- 5.Bourget O., Howland J.S., Joye A.: Spectral analysis of unitary band matrices. Commun. Math. Phys. 234, 191–227 (2003)zbMATHMathSciNetCrossRefADSGoogle Scholar
- 6.Chandler-Wilde S.N., Chonchaiya R., Lindner M.: On the spectra and pseudospectra of a class of non-self-adjoint random matrices and operators. Oper. Matrices 7, 739–775 (2013)zbMATHMathSciNetCrossRefGoogle Scholar
- 7.Chandler-Wilde, S.N., Lindner, M.: Limit Operators, Collective Compactness, and the Spectral Theory of Infinite Matrices, vol. 210, no. 989. Memoirs of the American Mathematical Society, Providence (2011)Google Scholar
- 8.Chandler-Wilde S.N., Davies E.B.: Spectrum of a Feinberg–Zee random hopping matrix. J. Spectr. Theory 2, 147–179 (2012)zbMATHMathSciNetCrossRefGoogle Scholar
- 9.Clancey, K.: Seminormal Operators, LNM. vol. 742, Springer, New York (1979)Google Scholar
- 10.Davies E.B.: Spectral theory of pseudo-ergodic operators. Comm. Math. Phys. 216, 687–704 (2001)zbMATHMathSciNetCrossRefADSGoogle Scholar
- 11.Davies E.B.: Spectral properties of random non-self-adjoint matrices and operators. Proc. R. Soc. Lond. A. 457, 191–206 (2001)zbMATHCrossRefADSGoogle Scholar
- 12.Davies E.B.: Non-self-adjoint differential operators. Bull. Lond. Math. Soc. 34, 513–532 (2002)zbMATHCrossRefGoogle Scholar
- 13.Davies, E.B.: Linear Operators and their Spectra. In: Cambridge Studies in Advanced Mathematics, vol. 106. Cambridge University Press, Cambridge (2007)Google Scholar
- 14.Dimassi, M., Sjöstrand, J.: Spectral asymptotics in the semi-classical limit. In: Lecture Notes Series, vol. 268. Cambridge University Press, Cambridge (1999)Google Scholar
- 15.Feinberg J., Zee A.: Non-Hermitian localization and delocalization. Phys. Rev. E. 59, 6433–6443 (1999)CrossRefADSGoogle Scholar
- 16.Gohberg, I.C., Krein, M.G.: Introduction to the theory of linear nonselfadjoint operators. In: Translations of Mathematical Monographs, vol. 18. American Mathematical Society, Providence (1969)Google Scholar
- 17.Goldsheid I.Y., Khoruzhenko B.A.: Distribution of eigenvalues in non-Hermitian Anderson models. Phys. Rev. Lett. 80(13), 2897 (1998)CrossRefADSGoogle Scholar
- 18.Hamza E., Joye A.: Spectral transition for random quantum walks on trees. Commun. Math. Phys. 326, 415–439 (2014)zbMATHMathSciNetCrossRefADSGoogle Scholar
- 19.Hamza E., Joye A., Stolz G.: Dynamical localization for unitary Anderson models. Math. Phys. Anal. Geom. 12, 381–444 (2009)zbMATHMathSciNetCrossRefGoogle Scholar
- 20.Hatano N., Nelson D.R.: Vortex pinning and non-Hermitian quantum mechanics. Phys. Rev. B. 56, 8651–8673 (1997)CrossRefADSGoogle Scholar
- 21.Joye A.: Density of states and Thouless formula for random unitary band matrices. Ann. H. Poincaré 5, 347–379 (2004)zbMATHMathSciNetCrossRefGoogle Scholar
- 22.Joye A.: Dynamical localization for d-dimensional random quantum walks. Quantum Inf. Process. Spec. Issue Quantum Walks 11, 1251–1269 (2012)zbMATHMathSciNetCrossRefGoogle Scholar
- 23.Joye, A.: Dynamical localization of random quantum walks on the lattice. In: Jensen, A. (ed) XVIIth International Congress on Mathematical Physics, Aalborg, Denmark, 6–11 Aug 2012, World Scientific, pp. 486–494 (2013)Google Scholar
- 24.Joye A., Merkli M.: Dynamical localization of quantum walks in random environments. J. Stat. Phys. 140, 1025–1053 (2010)zbMATHMathSciNetCrossRefGoogle Scholar
- 25.Kato T.: Perturbation Theory for Linear Operators. Springer, New York (1982)zbMATHCrossRefGoogle Scholar
- 26.Kempe J.: Quantum random walks: an introductory overview. Contemp. Phys. 44, 307–327 (2003)CrossRefADSGoogle Scholar
- 27.Konno, N.: Quantum walks. In: Quantum Potential Theory. Lecture Notes in Mathematics, vol. 1954, pp. 309–452 (2009)Google Scholar
- 28.Kubrusly C.S.: Spectral Theory of Operators on Hilbert Spaces. Birkhäuser, Boston (2012)CrossRefGoogle Scholar
- 29.Reed M., Simon B.: Methods of Modern Mathematical Physics, vol. 1–4. Academic Press, New York (1979)Google Scholar
- 30.Simon, B.: Orthogonal Polynomials on the Unit Circle, Parts 1 and 2. In: Proceedings of AMS Colloquium Publications, vol. 54.1, American Mathematical Society, Providence (2005)Google Scholar
- 31.Sjöstrand, J.: Spectral properties of non-self-adjoint operators. In: Proceedings of Notes of Lectures Held in Evian les Bains, (2009). arXiv:1002.4844
- 32.Nagy B., Foias C., Berkovici H., Kérchy L.: Harmonic Analysis of Operators in Hilbert Spaces. Springer, New York (2010)CrossRefGoogle Scholar
- 33.Venegas-Andraca S.E.: Quantum walks: a comprehensive review. Quantum Inf. Process. 11, 1015–1106 (2012)zbMATHMathSciNetCrossRefGoogle Scholar
- 34.Trefethen L.N., Embree M.: Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators. PUP, Princeton (2005)Google Scholar
- 35.Williams J.P.: Spectra of products and numerical ranges. J. Math. Anal. Appl. 17, 214–220 (1967)zbMATHMathSciNetCrossRefGoogle Scholar
- 36.Wei Y., Fyodorov Y.V.: On the mean density of complex eigenvalues for an ensemble of random matrices with prescribed singular values. J. Phys. A 41, 50200 (2008)MathSciNetCrossRefGoogle Scholar
Copyright information
© Springer Basel 2014