Advertisement

Annales Henri Poincaré

, Volume 16, Issue 11, pp 2695–2711 | Cite as

Natural Extensions of Electroweak Geometry and Higgs Interactions

  • Daniel CanaruttoEmail author
Article

Abstract

We explore the possibility that the Higgs boson of the standard model be actually a member of a larger family, by showing that a more elaborate internal structure naturally arises from geometrical arguments, in the context of a partly original handling of gauge fields which was put forward in previous papers. A possible mechanism yielding the usual Higgs potential is proposed. New types of point interactions, arising in particular from two-spinor index contractions, are shown to be allowed.

Keywords

Higgs Boson Ghost Vector Bundle Linear Connection Tensor Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Lavelle, M., McMullan, D.: Observables and gauge fixing in spontaneously broken gauge theories. Phys. Lett. B 347, 89 (1995)Google Scholar
  2. 2.
    Derdzinski, A.: Geometry of the Standard Model. In: Notes of a talk at the Conference on Geometry in Bedlewo, Poland, September (2002)Google Scholar
  3. 3.
    Talmadge A.: Symmetry breaking via internal geometry. Int. J. Math. Math. Sci. 13, 2023–2030 (2005)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Faddeev, L.D.: An alternative interpretation of the Weinberg-Salam model. In: Talk at the conference “New Trends in High Energy Physics”, Yalta, Crimea, Sept. 27-Oct. 4 (2008). arXiv:0811.3311v2 [hep-th]
  5. 5.
    Foot, R., Kobakhidze, A., McDonald, K.L.: Dilaton as the higgs boson. arXiv:0812.1604v2
  6. 6.
    Ryskin, M.G., Shuvaev, A.G.: Higgs boson as a dilaton. arXiv:0909.3374v1
  7. 7.
    Masson, T., Wallet, J.C.: A remark on the spontaneous symmetry breaking mechanism in the standard model. arXiv:1001.1176v1
  8. 8.
    Moffat, J.W.: Ultraviolet complete electroweak model without a higgs particle. Eur. Phys. J. Plus 126, 53 (2011). arXiv:1006.1859v5
  9. 9.
    Novello, M., Bittencourt, E.: What is the origin of the mass of the Higgs boson? Phys. Rev. D 86, 063510 (2012). arXiv:1209.4871v1
  10. 10.
    Antipin, O., Mojaza, M., Sannino, F.: Natural conformal extensions of the standard model. Phys. Rev. D 89, 085015 (2014). arXiv:1310.0957v3
  11. 11.
    Canarutto D.: Possibly degenerate tetrad gravity and Maxwell–Dirac fields. J. Math. Phys. 39(N.9), 4814–4823 (1998)zbMATHMathSciNetCrossRefADSGoogle Scholar
  12. 12.
    Canarutto D.: Two-spinors, field theories and geometric optics in curved spacetime. Acta Appl. Math. 62(N.2), 187–224 (2000)zbMATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Canarutto, D.: Quantum bundles and quantum interactions. Int. J. Geom. Method Mod. Phys. 2(5), 895–917 (2005). arXiv:math-ph/0506058v2
  14. 14.
    Canarutto, D.: Minimal geometric data approach to Dirac algebra, spinor groups and field theories. Int. J. Geom. Met. Mod. Phys. 4(6), 1005–1040 (2007). arXiv:math-ph/0703003
  15. 15.
    Canarutto, D.: Tetrad gravity, electroweak geometry and conformal symmetry. Int. J. Geom. Met. Mod. Phys. 8(4), 797–819 (2011). arXiv:1009.2255v1 [math-ph]
  16. 16.
    Canarutto, D.: Nature’s software. In: Essay presented for the 2011 contest, “Is Reality Digital or Analog?”, of the Foundational Questions Institute (FQXi). http://fqxi.org/community/forum/topic/831
  17. 17.
    Canarutto, D.: Positive spaces, generalized semi-densities and quantum interactions. J. Math. Phys. 53(3), 032302 (2012). http://dx.doi.org/10.1063/1.3695348 (24 pages)
  18. 18.
    Canarutto, D.: Two-spinor geometry and gauge freedom. Int. J. Geom. Met. Mod. Phys. 11, 1460016 (2014). arXiv:1404.5054v2 [math-ph]
  19. 19.
    Canarutto, D.: Frölicher-smooth geometries, quantum jet bundles and BRST symmetry. J. Geom. Phys. (2014). http://dx.doi.org/10.1016/j.geomphys.2014.11.013. arXiv:1405.1351v1 [math-ph]
  20. 20.
    Janyška, J., Modugno, M., Vitolo, R.: An algebraic approach to physical scales. Acta Appl. Math. 110 N.3, 1249–1276 (2010). arXiv:0710.1313v1 [math.AC]
  21. 21.
    Penrose, R.: Angular momentum: an approach to combinatorial space-time. In: Bastin T. (ed.) Quantum Theory and Beyond—Essays and Discussions Arising from a Colloquium. Cambridge Univ. Press, Cambridge, pp. 151–180 (1971)Google Scholar
  22. 22.
    Veltman M.: Diagrammatica. Cambridge University press, Cambridge (1994)CrossRefGoogle Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  1. 1.Dipartimento di Matematica e Informatica “U. Dini”FirenzeItalia

Personalised recommendations