Advertisement

Annales Henri Poincaré

, Volume 16, Issue 11, pp 2465–2497 | Cite as

On Quantum Percolation in Finite Regular Graphs

  • Charles BordenaveEmail author
Article
  • 95 Downloads

Abstract

The aim of this paper is twofold. First, we study eigenvalues and eigenvectors of the adjacency matrix of a bond percolation graph when the base graph is finite and well approximated locally by an infinite regular graph. We relate quantitatively the empirical measure of the eigenvalues and the delocalization of the eigenvectors to the spectrum of the adjacency operator of the percolation on the infinite graph. Secondly, we prove that percolation on an infinite regular tree with degree at least three preserves the existence of an absolutely continuous spectrum if the removal probability is small enough. These two results are notably relevant for bond percolation on a uniformly sampled regular graph or a Cayley graph with large girth.

Keywords

Adjacency Matrix Continuous Spectrum Random Graph Regular Graph Cayley Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Aizenman M., Sims R., Warzel S.: Stability of the absolutely continuous spectrum of random Schrödinger operators on tree graphs. Probab. Theory Relat. Fields 136(3), 363–394 (2006)zbMATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Aizenman M., Warzel S.: Resonant delocalization for random Schrödinger operators on tree graphs. J. Eur. Math. Soc. (JEMS) 15(4), 1167–1222 (2013)zbMATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Aldous, D., Lyons, R.: Processes on unimodular random networks. Electron. J. Probab. 12(54):1454–1508 (electronic) (2007)Google Scholar
  4. 4.
    Anantharaman, N., Le Masson, E.: Quantum ergodicity on large regular graphs. arXiv:1304.4343 [math-ph]
  5. 5.
    Anderson P.W.: Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492–1505 (1958)CrossRefADSGoogle Scholar
  6. 6.
    Antunović, T., Veselić, I.: Spectral asymptotics of percolation Hamiltonians on amenable Cayley graphs. In: Methods of spectral analysis in mathematical physics, volume 186 of Oper. Theory Adv. Appl. Birkhäuser, Basel, pp. 1–29 (2009)Google Scholar
  7. 7.
    Athreya, K.B., Ney, P.E.: Branching processes. Springer, New York, Die Grundlehren der mathematischen Wissenschaften, Band 196 (1972)Google Scholar
  8. 8.
    Bordenave, C.: Spectral measures of random graphs. (2014). http://www.math.univ-toulouse.fr/bordenave/
  9. 9.
    Bordenave C., Caputo P., Chafaï D.: Spectrum of non-Hermitian heavy tailed random matrices. Comm. Math. Phys. 307(2), 513–560 (2011)zbMATHMathSciNetCrossRefADSGoogle Scholar
  10. 10.
    Bordenave C., Guionnet A.: Localization and delocalization of eigenvectors for heavy-tailed random matrices. Probab. Theory Relat. Fields 157(3-4), 885–953 (2013)zbMATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Bordenave C., Lelarge M.: Resolvent of large random graphs. Random Struct. Algorithms 37(3), 332–352 (2010)zbMATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Bordenave C., Lelarge M., Salez J.: The rank of diluted random graphs. Ann. Probab. 39(3), 1097–1121 (2011)zbMATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Bordenave, C., Sen, A., Virág, B.: Mean quantum percolation. arXiv:1308.3755
  14. 14.
    Brooks S., Lindenstrauss E.: Non-localization of eigenfunctions on large regular graphs. Israel J. Math. 193(1), 1–14 (2013)zbMATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Chayes J.T., Chayes L., Franz J.R., Sethna J.P., Trugman S.A.: On the density of states for the quantum percolation problem. J. Phys. A 19(18), L1173–L1177 (1986)MathSciNetCrossRefADSGoogle Scholar
  16. 16.
    de Gennes P.G., Lafore P., Millot J.P.: Amas accidentels dans les solutions solides désordonnées. J. Phys. Chem. Solids 11(12), 105–110 (1959)CrossRefADSGoogle Scholar
  17. 17.
    de Gennes P.G., Lafore P., Millot J.P.: Sur un phénomène de propagation dans un milieu désordonné. J. Phys. Rad. 20, 624 (1959)CrossRefGoogle Scholar
  18. 18.
    DeVore, R.A., Lorentz, G.G.: Constructive approximation. Volume 303 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Berlin (1993)Google Scholar
  19. 19.
    Dumitriu I., Pal S.: Sparse regular random graphs: spectral density and eigenvectors. Ann. Probab. 40(5), 2197–2235 (2012)zbMATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    Duren P.L.: Theory of H p spaces. Pure and applied mathematics, Vol. 38. Academic Press, New York (1970)Google Scholar
  21. 21.
    Durrett R.: Random graph dynamics. Cambridge series in statistical and probabilistic mathematics. Cambridge University Press, Cambridge (2010)Google Scholar
  22. 22.
    Erdős, L., Schlein, B., Yau, H.-T.: Wegner estimate and level repulsion for Wigner random matrices. Int. Math. Res. Not. IMRN (3), 436–479 (2010)Google Scholar
  23. 23.
    Flajolet P., Sedgewick R.: Analytic combinatorics. Cambridge University Press, Cambridge (2009)zbMATHCrossRefGoogle Scholar
  24. 24.
    Froese R., Halasan F., Hasler D.: Absolutely continuous spectrum for the Anderson model on a product of a tree with a finite graph. J. Funct. Anal. 262(3), 1011–1042 (2012)zbMATHMathSciNetCrossRefGoogle Scholar
  25. 25.
    Froese R., Hasler D., Spitzer W.: Absolutely continuous spectrum for the Anderson model on a tree: a geometric proof of Klein’s theorem. Comm. Math. Phys. 269(1), 239–257 (2007)zbMATHMathSciNetCrossRefADSGoogle Scholar
  26. 26.
    Froese, R., Hasler, D., Spitzer, W.: A geometric approach to absolutely continuous spectrum for discrete Schrödinger operators. In: Random walks, boundaries and spectra. Volume 64 of Progr. Probab., pp. 201–226. Birkhäuser/Springer, Basel (2011)Google Scholar
  27. 27.
    Geisinger, L.: Convergence of the density of states and delocalization of eigenvectors on random regular graphs. arXiv:1305.1039
  28. 28.
    Golénia S., Schumacher C.: The problem of deficiency indices for discrete Schrödinger operators on locally finite graphs. J. Math. Phys. 52(6), 063512, 17 (2011)CrossRefGoogle Scholar
  29. 29.
    Halasan F.: Absolutely continuous spectrum for the Anderson model on some tree-like graphs. Ann. Henri Poincaré 13(4), 789–811 (2012)zbMATHMathSciNetCrossRefADSGoogle Scholar
  30. 30.
    Kallenberg O.: Foundations of modern probability. Probability and its applications (New York) second edition. Springer, New York (2002)Google Scholar
  31. 31.
    Keller M.: Absolutely continuous spectrum for multi-type Galton Watson trees. Ann. Henri Poincaré 13(8), 1745–1766 (2012)zbMATHCrossRefADSGoogle Scholar
  32. 32.
    Keller M., Lenz D., Warzel S.: Absolutely continuous spectrum for random operators on trees of finite cone type. J. Anal. Math. 118(1), 363–396 (2012)zbMATHMathSciNetCrossRefGoogle Scholar
  33. 33.
    Kirkpatrick S., Eggarter T.P.: Localized states of a binary alloy. Phys. Rev. B 6, 3598–3609 (1972)CrossRefADSGoogle Scholar
  34. 34.
    Klein A.: Extended states in the Anderson model on the Bethe lattice. Adv. Math. 133(1), 163–184 (1998)zbMATHMathSciNetCrossRefGoogle Scholar
  35. 35.
    Klein A., Sadel C.: Ballistic behavior for random Schrödinger operators on the Bethe strip. J. Spectr. Theory 1(4), 409–442 (2011)zbMATHMathSciNetCrossRefGoogle Scholar
  36. 36.
    Klein A., Sadel C.: Absolutely continuous spectrum for random Schrödinger operators on the Bethe strip. Math. Nachr. 285(1), 5–26 (2012)zbMATHMathSciNetCrossRefGoogle Scholar
  37. 37.
    Kottos T., Smilansky U.: Periodic orbit theory and spectral statistics for quantum graphs. Ann. Phys. 274(1), 76–124 (1999)zbMATHMathSciNetCrossRefADSGoogle Scholar
  38. 38.
    Li W.-C.W, Patrick Solé P.: Spectra of regular graphs and hypergraphs and orthogonal polynomials. Eur. J. Combin. 17(5), 461–477 (1996)zbMATHCrossRefGoogle Scholar
  39. 39.
    McKay, B.D., Wormald, N.C., Wysocka, B.: Short cycles in random regular graphs. Electron. J. Combin. 11 (1), Research Paper pp. 66, 12 (electronic) (2004)Google Scholar
  40. 40.
    Müller, P., Stollmann, P.: Percolation Hamiltonians. In: Random walks, boundaries and spectra. Volume 64 of Progr. Probab., pp. 235–258. Birkhäuser/Springer, Basel (2011)Google Scholar
  41. 41.
    Schumacher, C., Schwarzenberger, F.: Approximation of the integrated density of states on sofic groups. Annales Henri Poincaré, pp. 1–35 (2014)Google Scholar
  42. 42.
    Shirai, T.: Limit theorems for random analytic functions and their zeros. In: Functions in number theory and their probabilistic aspects, RIMS Kôkyûroku Bessatsu, B34, pages 335–359. Res. Inst. Math. Sci. (RIMS), Kyoto (2012)Google Scholar
  43. 43.
    Simon B.: Trace ideals and their applications. Volume 120 of mathematical surveys and monographs second edition. American Mathematical Society, Providence, RI (2005)Google Scholar
  44. 44.
    Tao T., Vu V.: Random matrices: universality of local eigenvalue statistics. Acta Math. 206(1), 127–204 (2011)zbMATHMathSciNetCrossRefGoogle Scholar
  45. 45.
    Terras A.: Finite quantum chaos. Am. Math. Monthly 109(2), 121–139 (2002)zbMATHMathSciNetCrossRefGoogle Scholar
  46. 46.
    Terras, A.: Zeta functions of graphs. Volume 128 of Cambridge Studies in Advanced Mathematics. A stroll through the garden. Cambridge University Press, Cambridge (2011)Google Scholar
  47. 47.
    Tran L.V., Vu V.H., Wang Ke.: Sparse random graphs: eigenvalues and eigenvectors. Random Struct. Algorithms 42(1), 110–134 (2013)zbMATHMathSciNetCrossRefGoogle Scholar
  48. 48.
    Veselić I.: Spectral analysis of percolation Hamiltonians. Math. Ann. 331(4), 841–865 (2005)zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  1. 1.Institut de Mathématiques de ToulouseCNRS and University of ToulouseToulouse cedex 09France

Personalised recommendations