Advertisement

Annales Henri Poincaré

, Volume 16, Issue 10, pp 2367–2397 | Cite as

On Self-Adjoint Extensions and Symmetries in Quantum Mechanics

  • Alberto Ibort
  • Fernando LledóEmail author
  • Juan Manuel Pérez-Pardo
Article

Abstract

Given a unitary representation of a Lie group G on a Hilbert space \({\mathcal H}\), we develop the theory of G-invariant self-adjoint extensions of symmetric operators using both von Neumann’s theorem and the theory of quadratic forms. We also analyze the relation between the reduction theory of the unitary representation and the reduction of the G-invariant unbounded operator. We also prove a G-invariant version of the representation theorem for closed and semi-bounded quadratic forms. The previous results are applied to the study of G-invariant self-adjoint extensions of the Laplace–Beltrami operator on a smooth Riemannian manifold with boundary on which the group G acts. These extensions are labeled by admissible unitaries U acting on the L 2-space at the boundary and having spectral gap at −1. It is shown that if the unitary representation V of the symmetry group G is traceable, then the self-adjoint extension of the Laplace–Beltrami operator determined by U is G-invariant if U and V commute at the boundary. Various significant examples are discussed at the end.

Keywords

Hilbert Space Quadratic Form Unitary Representation Symmetric Operator Representation Versus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Abraham R., Marsden J., Ratiu T.: Manifolds, Tensor Analysis and Applications. Springer, Berlin (1988)CrossRefzbMATHGoogle Scholar
  2. 2.
    Adams R.A., Fournier J.J.F.: Sobolev Spaces. Pure and Applied Mathematics, 2nd edn. Academic Press, Oxford (2003)Google Scholar
  3. 3.
    Akhiezer N.I., Glazman I.M.: Theory of Linear Operators in Hilbert Spaces, vol. II. Dover Publications, New York (1961)Google Scholar
  4. 4.
    Asorey M., Esteve J.G., Pacheco A.F.: Planar rotor: the θ-vacuum structure, and some approximate methods in Quantum Mechanics. Phys. Rev. D 27, 1852–1868 (1983)CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    Asorey M., García-Álvarez D., Muñoz-Castañeda J.M.: Casimir effect and global theory of boundary conditions. J. Phys. A 39, 6127–6136 (2006)CrossRefADSMathSciNetzbMATHGoogle Scholar
  6. 6.
    Bargmann V.: On unitary ray representations of continuous groups. Ann. Math. 59, 1–46 (1954)CrossRefMathSciNetzbMATHGoogle Scholar
  7. 7.
    Bekker M.B.: A class of nondensely defined Hermitian contractions. Adv. Dyn. Syst. Appl. 2, 141–165 (2007)MathSciNetGoogle Scholar
  8. 8.
    Bekker M.B., Tsekanovskii E.: On periodic matrix-valued Weyl–Titchmarsh functions. J. Math. Anal. Appl. 294, 666–686 (2004)CrossRefMathSciNetzbMATHGoogle Scholar
  9. 9.
    Berezanskii J.M.: Expansions in Eigenfunctions of Self-adjoint Operators. Translations of Monographs. American Mathematical Society, Providence (1968)Google Scholar
  10. 10.
    Borchers H.J., Yngvason J.: Positivity of Wightman functionals and the existence of local nets. Commun. Math. Phys. 127, 607–615 (1990)CrossRefADSMathSciNetzbMATHGoogle Scholar
  11. 11.
    Cariñena J.F., Santander M.: On the projective unitary representations of connected Lie groups. J. Math. Phys. 16, 1416–1420 (1975)CrossRefADSzbMATHGoogle Scholar
  12. 12.
    Cariñena J.F., Santander M.: Projective covering group versus representation groups. J. Math. Phys. 21, 440–443 (1980)CrossRefADSMathSciNetzbMATHGoogle Scholar
  13. 13.
    Davies E.B.: Spectral Theory and Differential Operators. Cambridge University Press, London (1995)CrossRefzbMATHGoogle Scholar
  14. 14.
    Dunford N., Schwartz J.T.: Linear Operators Part I: General Theory. Wiley, New York (1976)Google Scholar
  15. 15.
    Dunford N., Schwartz J.T.: Linear Operators Part II: Spectral Theory. Self Adjoint Operators in Hilbert Space. Wiley, New York (1963)zbMATHGoogle Scholar
  16. 16.
    Exner P., Fraas F.: On the dense point and absolutely continuous spectrum for Hamiltonians with concentric δ shells. Lett. Math. Phys. 82, 25–37 (2007)CrossRefADSMathSciNetzbMATHGoogle Scholar
  17. 17.
    Dittrich J., Exner P., Seba P.: Dirac Hamiltonian with Coulomb potential and spherically symmetric shell contact interaction. J. Math. Phys. 33, 2207–2214 (1992)CrossRefADSMathSciNetzbMATHGoogle Scholar
  18. 18.
    Gitman D.M., Tyutin I.V., Voronov B.L.: Self-Adjoint Extensions in Quantum Mechanics. Birkäuser, New York (2012)CrossRefzbMATHGoogle Scholar
  19. 19.
    Ibort, A., Lledó, F., Pérez-Pardo, J.M.: Self-adjoint extensions of the Laplace–Beltrami operator and unitaries at the boundary. Preprint arXiv:1308.0527 (to appear in J. Funct. Anal.)
  20. 20.
    Ibort A., Pérez-Pardo J.M.: Numerical solutions of the spectral problem for arbitrary self-adjoint extensions of the one-dimensional Schrödinger equation. SIAM J. Numer. Anal. 51, 1254–1279 (2013)CrossRefMathSciNetzbMATHGoogle Scholar
  21. 21.
    Kato T.: Perturbation Theory for Linear Operators. Classics in Mathematics. Springer, Berlin (1995)Google Scholar
  22. 22.
    Koshmanenko V.: Singular Quadratic Forms in Perturbation Theory. Kluwer Academic Publishers, Dordrecht (1999)CrossRefzbMATHGoogle Scholar
  23. 23.
    Lions J.L., Magenes E.: Non-Homogeneous Boundary Value Problems and Applications. Grundlehren der mathematischen Wissenschaften, vol. I. Springer, Berlin (1972)CrossRefGoogle Scholar
  24. 24.
    Mackey G.W.: The Theory of Unitary Group Representations. The University of Chicago Press, Chicago (1976)zbMATHGoogle Scholar
  25. 25.
    Moretti V.: Spectral Theory and Quantum Mechanics. Springer, Milan (2013)CrossRefzbMATHGoogle Scholar
  26. 26.
    Nussbaum A.E.: Reduction theory for unbounded closed operators in Hilbert space. Duke Math. J. 31, 33–44 (1964)CrossRefMathSciNetzbMATHGoogle Scholar
  27. 27.
    Pedersen G.K.: Analysis Now. Springer, New York (1989)CrossRefzbMATHGoogle Scholar
  28. 28.
    Posilicano A.: Self-adjoint extensions of restrictions. Oper. Matrices 2, 483–506 (2008)CrossRefMathSciNetzbMATHGoogle Scholar
  29. 29.
    Reed M., Simon B.: Methods of Modern Mathematical Physics, vol. I. Academic Press, New York (1980)Google Scholar
  30. 30.
    Reed M., Simon B.: Methods of Modern Mathematical Physics, vol. II. Academic Press, New York (1975)Google Scholar
  31. 31.
    Simon, B.: Quantum dynamics: from automorphisms to hamiltonians. In: Lieb, E.H., Simon, B., Wightman, A.S. (eds.) Studies in Mathematical Physics. Essays in Honor of Valentine Bargman, Princeton University Press, Princeton (1976)Google Scholar
  32. 32.
    Thaller B.: The Dirac Equation. Springer, Berlin (1992)CrossRefGoogle Scholar
  33. 33.
    von Neumann J.: Zur Algebra der Funktionaloperationen und der Theorie der normalen Operatoren. Math. Ann. 102, 307–427 (1929)Google Scholar
  34. 34.
    von Neumann J.: Allgemeine Eigenwerttheorie hermitescher Funktionaloperatoren. Math. Ann. 102, 49–131 (1930)CrossRefMathSciNetGoogle Scholar
  35. 35.
    Schmüdgen K.: Unbounded Self-Adjoint Operators on Hilbert Space. Springer, Dordrecht (2012)CrossRefzbMATHGoogle Scholar
  36. 36.
    Shams N., Stanhope E., Webb D.L.: One cannot hear orbifold isotropy type. Arch. Math. 87, 375–384 (2006)CrossRefMathSciNetzbMATHGoogle Scholar
  37. 37.
    van der Waerden B.L.: Die gruppentheoretische Methode in der Quantenmechanik. Julius Springer, Berlin (1932)CrossRefGoogle Scholar
  38. 38.
    Weyl H.: Gruppentheorie und Quantenmechanik. S. Hirzel, Leipzig (1928)zbMATHGoogle Scholar
  39. 39.
    Wigner E.P.: On unitary representations of the inhomogeneous Lorentz group. Ann. Math. 40, 149–204 (1939)CrossRefMathSciNetGoogle Scholar
  40. 40.
    Wigner E.P.: Gruppentheorie und ihre Anwendung auf die Quantenmechanik der Atomspektren. F. Vieweg und Sohn, Braunschweig (1931)CrossRefGoogle Scholar
  41. 41.
    Woronowicz S.L.: Unbounded elements affiliated with C*-algebras and noncompact quantum groups. Commun. Math. Phys. 136, 399–432 (1991)CrossRefADSMathSciNetzbMATHGoogle Scholar
  42. 42.
    Woronowicz S.L., Napiórkowski K.: Operator theory in the C*-algebra framework. Rep. Math. Phys. 31, 353–371 (1992)CrossRefADSMathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  • Alberto Ibort
    • 1
    • 2
  • Fernando Lledó
    • 1
    • 2
    Email author
  • Juan Manuel Pérez-Pardo
    • 1
    • 2
    • 3
  1. 1.Department of MathematicsUniversidad Carlos III de MadridLeganés (Madrid)Spain
  2. 2.Instituto de Ciencias Matemáticas (CSIC-UAM-UC3M-UCM)MadridSpain
  3. 3.INFN-Sezione di NapoliNaplesItaly

Personalised recommendations