Advertisement

Annales Henri Poincaré

, Volume 16, Issue 12, pp 2881–2918 | Cite as

Deformations of Charged Axially Symmetric Initial Data and the Mass–Angular Momentum–Charge Inequality

  • Ye Sle Cha
  • Marcus A. KhuriEmail author
Article

Abstract

We show how to reduce the general formulation of the mass–angular momentum–charge inequality, for axisymmetric initial data of the Einstein–Maxwell equations, to the known maximal case whenever a geometrically motivated system of equations admits a solution. It is also shown that the same reduction argument applies to the basic inequality yielding a lower bound for the area of black holes in terms of mass, angular momentum, and charge. This extends previous work by the authors (Cha and Khuri, Ann Henri Poincaré, doi: 10.1007/s00023-014-0332-6, arXiv:1401.3384, 2014), in which the role of charge was omitted. Lastly, we improve upon the hypotheses required for the mass–angular momentum–charge inequality in the maximal case.

Keywords

Black Hole Angular Momentum Initial Data Scalar Curvature Fundamental Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bray, H., Khuri, M.: A Jang equation approach to the Penrose inequality. Discrete Contin. Dyn. Syst. 27(2), 741–766 (2010). arxiv:0910.4785
  2. 2.
    Bray, H., Khuri, M.: P.D.E.’s which imply the Penrose conjecture. Asian J. Math. 15(4), 557–610 (2011). arXiv:0905.2622
  3. 3.
    Brill D.: On the positive definite mass of the Bondi–Weber–Wheeler time-symmetric gravitational waves. Ann. Phys. 7, 466–483 (1959)MathSciNetCrossRefADSGoogle Scholar
  4. 4.
    Cha, Y., Khuri, M.: Deformations of axially symmetric initial data and the mass–angular momentum inequality. Ann. Henri Poincaré (to appear) (2014). doi: 10.1007/s00023-014-0332-6. arXiv:1401.3384
  5. 5.
    Choquet-Bruhat, Y.: General Relativity and the Einstein Equations. Oxford University Press, USA (2009)Google Scholar
  6. 6.
    Chruściel, P.: On completeness of orbits of Killing vector fields. Class. Quantum Gravity 10(10), 2091–2101 (1993). arXiv:gr-qc/9304029
  7. 7.
    Chruściel, P.: Mass and angular-momentum inequalities for axi-symmetric initial data sets. I. Posit. Mass. Ann. Phys. 323, 2566–2590 (2008). arXiv:0710.3680
  8. 8.
    Chruściel, P., Costa, J.: Mass, angular-momentum and charge inequalities for axisymmetric initial data. Class. Quantum Gravity 26(23), 235013 (2009). arXiv:0909.5625
  9. 9.
    Chruściel, P., Galloway, G., Pollack, D.: Mathematical general relativity: a sampler. Bull. Am. Math. Soc. (N.S.) 47(4), 567–638 (2010). arXiv:1004.1016
  10. 10.
    Chruściel, P., Li, Y., Weinstein, G.: Mass and angular-momentum inequalities for axi-symmetric initial data sets. II. Angular Momentum. Ann. Phys. 323, 2591–2613 (2008). arXiv:0712.4064
  11. 11.
    Clement, M., Jaramillo, J., Reiris, M.: Proof of the area-angular momentum–charge inequality for axisymmetric black holes. Class. Quantum Grav. 30, 065017 (2012). arXiv:1207.6761
  12. 12.
    Costa, J.: Proof of a Dain inequality with charge. J. Phys. A 43(28), 285202 (2010). arXiv:0912.0838
  13. 13.
    Dain, S.: Proof of the angular momentum-mass inequality for axisymmetric black hole. J. Differ. Geom. 79, 33–67 (2008). arXiv:gr-qc/0606105
  14. 14.
    Dain, S.: Geometric inequalities for axially symmetric black holes. Class. Quantum Gravity 29(7), 073001 (2012). arXiv:1111.3615
  15. 15.
    Dain, S., Khuri, M., Weinstein, G., Yamada, S.: Lower bounds for the area of black holes in terms of mass, charge, and angular momentum. Phys. Rev. D 88, 024048 (2013). arXiv:1306.4739
  16. 16.
    Disconzi, M., Khuri, M.: On the Penrose inequality for charged black holes. Class. Quantum Gravity 29, 245019 (2012). arXiv:1207.5484
  17. 17.
    Han, Q., Khuri, M.: Existence and blow up behavior for solutions of the generalized Jang equation. Commun. Partial Differ. Equ. 38, 2199–2237 (2013). arXiv:1206.0079
  18. 18.
    Huang, L.-H., Schoen, R., Wang, M.-T.: Specifying angular momentum and center of mass for vacuum initial data sets. Commun. Math. Phys. 306(3), 785–803 (2011). arXiv:1008.4996
  19. 19.
    Jang, P.-S.: On the positivity of energy in general relaitivity. J. Math. Phys. 19, 1152–1155 (1978)MathSciNetCrossRefADSGoogle Scholar
  20. 20.
    Khuri, M.: A Penrose-like inequality for general initial data sets. Commun. Math. Phys. 290, 779–788 (2009) (erratum, 317, 267, 2013). arXiv:0910.5039
  21. 21.
    Khuri, M.: A Penrose-like inequality with charge. Gen. Relativ. Gravit. 45, 2341–2361 (2013). arXiv:1308.3591
  22. 22.
    Khuri, M., Weinstein, G.: Rigidity in the positive mass theorem with charge. J. Math. Phys. 54, 092501 (2013). arXiv:1307.5499
  23. 23.
    Schoen, R., Zhou, X.: Convexity of reduced energy and mass angular momentum inequalities. Ann. Henri Poincaré 14, 1747–1773 (2013). arXiv:1209.0019
  24. 24.
    Schoen R., Yau S.-T.: Proof of the positive mass theorem II. Commun. Math. Phys. 79, 231–260 (1981)zbMATHMathSciNetCrossRefADSGoogle Scholar
  25. 25.
    Weinstein, G.: N-black hole stationary and axially symmetric solutions of the Einstein/Maxwell equations. Commun. Partial Differ. Equ. 21(9–10), 1389–1430 (1996). arXiv:gr-qc/9412036
  26. 26.
    Zhou, X.: Mass angular momentum inequality for axisymmetric vacuum data with small trace. Preprint (2012). arXiv:1209.1605

Copyright information

© Springer Basel 2014

Authors and Affiliations

  1. 1.Department of MathematicsStony Brook UniversityStony BrookUSA
  2. 2.Mathematical InstituteUniversity of OxfordOxfordUK

Personalised recommendations