Annales Henri Poincaré

, Volume 16, Issue 10, pp 2399–2463 | Cite as

Jack Polynomials with Prescribed Symmetry and Some of Their Clustering Properties

  • Patrick DesrosiersEmail author
  • Jessica Gatica


We study Jack polynomials in N variables, with parameter α, and having a prescribed symmetry with respect to two disjoint subsets of variables. For instance, these polynomials can exhibit a symmetry of type AS, which means that they are antisymmetric in the first m variables and symmetric in the remaining Nm variables. One of our main goals is to extend recent works on symmetric Jack polynomials (Baratta and Forrester in Nucl Phys B 843:362–381, 2011; Berkesch et al. in Jack polynomials as fractional quantum Hall states and the Betti numbers of the (k + 1)-equals ideal, 2013; Bernevig and Haldane in Phys Rev Lett 101:1–4, 2008) and prove that the Jack polynomials with prescribed symmetry also admit clusters of size k and order r, that is, the polynomials vanish to order r when k + 1 variables coincide. We first prove some general properties for generic α, such as their uniqueness as triangular eigenfunctions of operators of Sutherland type, and the existence of their analogues in infinity many variables. We then turn our attention to the case with α = −(k + 1)/(r − 1). We show that for each triplet (k, r, N), there exist admissibility conditions on the indexing sets, called superpartitions, that guaranty both the regularity and the uniqueness of the polynomials. These conditions are also used to establish similar properties for non-symmetric Jack polynomials. As a result, we prove that the Jack polynomials with arbitrary prescribed symmetry, indexed by (k, r, N)-admissible superpartitions, admit clusters of size k = 1 and order r ≥ 2. In the last part of the article, we find necessary and sufficient conditions for the invariance under translation of the Jack polynomials with prescribed symmetry AS. This allows to find special families of superpartitions that imply the existence of clusters of size k > 1 and order r ≥ 2.


Cluster Property Symmetric Polynomial Admissibility Condition Symmetry Type Invariant Polynomial 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Baker, T.H., Dunkl, C.F., Forrester, P.J.: Polynomial eigenfunctions of the Calogero-Sutherland-Moser models with exchange terms In: van Diejen, J.F., Vinet, L. (eds.) Calogero-Sutherland-Moser Models. CRM Series in Mathematical Physics, pp. 37–42. Springer, Berlin (2000)Google Scholar
  2. 2.
    Baker T.H., Forrester P.J.: The Calogero-Sutherland model and polynomials with prescribed symmetry. Nucl. Phys. B 492, 682–716 (1997)CrossRefADSMathSciNetzbMATHGoogle Scholar
  3. 3.
    Baratta W.: Some properties of Macdonald polynomials with prescribed symmetry. Kyushu J. Math. 64, 323–343 (2010)CrossRefMathSciNetzbMATHGoogle Scholar
  4. 4.
    Baratta W., Forrester P.J.: Jack polynomial fractional quantum Hall states and their generalizations. Nucl. Phys. B 843, 362–381 (2011)CrossRefADSMathSciNetzbMATHGoogle Scholar
  5. 5.
    Berkesch, C., Griffeth, S., Sam, S.V.: Jack polynomials as fractional quantum Hall states and the Betti numbers of the (k + 1)-equals ideal. arXiv:1303.4126 (2013)
  6. 6.
    Bernard D., Gaudin M., Haldane F.D., Pasquier V.: Yang-Baxter equation in long range interacting system. J. Phys. A 26, 5219–5236 (1993)CrossRefADSMathSciNetzbMATHGoogle Scholar
  7. 7.
    Bernevig B.A., Haldane F.D.: Fractional quantum Hall states and Jack polynomials. Phys. Rev. Lett. 101(246806), 1–4 (2008)Google Scholar
  8. 8.
    Bernevig B.A., Haldane F.D.: Generalized clustering conditions of Jack polynomials at negative Jack parameter α. Phys. Rev. B 77(184502), 1–10 (2008)Google Scholar
  9. 9.
    Corteel S., Lovejoy J.: Overpartitions. Trans. Amer. Math. Soc. 356, 1623–1635 (2004)CrossRefMathSciNetzbMATHGoogle Scholar
  10. 10.
    Desrosiers P., Lapointe L., Mathieu P.: Jack polynomials in superspace. Commun. Math. Phys. 242, 331–360 (2003)CrossRefADSMathSciNetzbMATHGoogle Scholar
  11. 11.
    Desrosiers P., Lapointe L., Mathieu P.: Classical symmetric functions in superspace. J. Alg. Comb. 24, 209–238 (2006)CrossRefMathSciNetzbMATHGoogle Scholar
  12. 12.
    Desrosiers P., Lapointe L., Mathieu P.: Evaluation and normalization of Jack polynomials in superspace. Int. Math. Res. Not. 23, 5267–5327 (2012)MathSciNetGoogle Scholar
  13. 13.
    Desrosiers P., Lapointe L., Mathieu P.: Jack superpolynomials with negative fractional parameter: clustering properties and super-Virasoro ideals. Commun. Math. Phys. 316, 395–440 (2012)CrossRefADSMathSciNetzbMATHGoogle Scholar
  14. 14.
    Dunkl C.F.: Orthogonal polynomials of types A and B and related Calogero models. Commun. Math. Phys. 197, 451–487 (1998)CrossRefADSMathSciNetzbMATHGoogle Scholar
  15. 15.
    Dunkl, C.F., Luque, J.-G.: Clustering properties of rectangular Macdonald polynomials. arXiv:1204.5117 (2012)
  16. 16.
    Feigin B., Jimbo M., Miwa T., Mukhin E.: A differential ideal of symmetric polynomials spanned by Jack polynomials at β = −(r−1)/(k + 1). Int. Math. Res. Not. 23, 1223–1237 (2002)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Forrester, P.J.: Log-gases and random matrices. In: London Mathematical Society Monographs, vol. 34. Princeton University Press, Princeton (2010)Google Scholar
  18. 18.
    Forrester P.J., McAnally D.S., Nikoyalevsky Y.: On the evaluation formula for Jack polynomials with prescribed symmetry. J. Phys. A 34, 8407–8424 (2001)CrossRefADSMathSciNetzbMATHGoogle Scholar
  19. 19.
    Jolicoeur Th., Luque J.-G.: Highest weight Macdonald and Jack polynomials. J. Phys. A Math. Theor. 44, 055204 (2011)CrossRefADSMathSciNetGoogle Scholar
  20. 20.
    Kato Y., Kuramoto Y.: Exact solution of the sutherland model with arbitrary internal symmetry. Phys. Rev. Lett. 74, 1222–1225 (1995)CrossRefADSGoogle Scholar
  21. 21.
    Kato Y., Kuramoto Y.: Dynamics of One-Dimensional Quantum Systems: Inverse-Square Interaction Models. Cambridge University Press, Cambridge (2009)zbMATHGoogle Scholar
  22. 22.
    Kato Y., Yamamoto T.: Jack polynomials with prescribed symmetry and hole propagator of spin Calogero-Sutherland model. J. Phys. A 31, 9171–9184 (1998)CrossRefADSMathSciNetzbMATHGoogle Scholar
  23. 23.
    Knop F., Sahi S.: A recursion and a combinatorial formula for Jack polynomials. Invent. Math. 128, 9–22 (1997)CrossRefADSMathSciNetzbMATHGoogle Scholar
  24. 24.
    Lassalle M.: Une formule du binôme généralisée pour les polynômes de Jack. C. R. Acad. Sci. Paris Série I 310, 253–256 (1990)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Lassalle M.: Coefficients binomiaux génétalisés et polynômes de Macdonald. J. Funct. Anal. 158, 289–324 (1998)CrossRefMathSciNetzbMATHGoogle Scholar
  26. 26.
    Macdonald I.G.: Symmetric Functions and Hall Polynomials, 2nd edn. Oxford University Press Inc, New York (1995)zbMATHGoogle Scholar
  27. 27.
    Opdam E.M.: Harmonic analysis for certain representations of graded Hecke algebras. Acta Math. 175, 75–121 (1995)CrossRefMathSciNetzbMATHGoogle Scholar
  28. 28.
    Polychronakos A.P.: Exchange operator formalism for integrable systems of particles. Phys. Rev. Lett. 69, 702–705 (1992)CrossRefADSMathSciNetGoogle Scholar
  29. 29.
    Polychronakos A.P.: The physics and mathematics of Calogero particles. J. Phys. A 39, 12793–12845 (2006)CrossRefADSMathSciNetzbMATHGoogle Scholar
  30. 30.
    Stanley R.P.: Some combinatorial properties of Jack symmetric functions. Adv. Math. 77, 76–115 (1989)CrossRefMathSciNetzbMATHGoogle Scholar
  31. 31.
    Sutherland B.: Exact results for a quantum many-body problem in one dimension. Phys. Rev. A 4, 2019–2021 (1971)CrossRefADSGoogle Scholar
  32. 32.
    Sutherland B.: Exact results for a quantum many-body problem in one dimension. II. Phys. Rev. A 5, 1372–1376 (1972)CrossRefADSGoogle Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  1. 1.Centre de recherche de l’Institut universitaire, en santé mentale de Québec (CRIUSMQ)QuebecCanada
  2. 2.Département de physique, de génie physique et d’optiqueUniversité LavalQuebecCanada
  3. 3.Instituto Matemática y FísicaUniversidad de TalcaTalcaChile

Personalised recommendations