Accurate Semiclassical Spectral Asymptotics for a Two-Dimensional Magnetic Schrödinger Operator
- 99 Downloads
- 4 Citations
Abstract
We revisit the problem of semiclassical spectral asymptotics for a pure magnetic Schrödinger operator on a two-dimensional Riemannian manifold. We suppose that the minimal value b 0 of the intensity of the magnetic field is strictly positive, and the corresponding minimum is unique and non-degenerate. The purpose is to get the control on the spectrum in an interval \({(hb_0, h(b_0 + \gamma_0)]}\) for some \({\gamma_0 > 0}\) independent of the semiclassical parameter h. The previous papers by Helffer–Mohamed and by Helffer–Kordyukov were only treating the ground-state energy or a finite (independent of h) number of eigenvalues. Note also that N. Raymond and S. Vũ Ngọc have recently developed a different approach of the same problem.
Keywords
Selfadjoint Operator Principal Symbol Semiclassical Analysis Weyl Quantization Weyl SymbolReferences
- 1.Agmon, S.: Lectures on Exponential Decay of Solutions of Second-order Elliptic Equations: bounds on eigenfunctions of N-body Schrödinger operators. Mathematical Notes, vol. 29. Princeton University Press, Princeton; University of Tokyo Press, Tokyo (1982)Google Scholar
- 2.Bellissard, J.: C * algebras in solid state physics. 2D electrons in a uniform magnetic field. Operator algebras and applications, vol. 2, pp. 49–76, London Math. Soc. Lecture Note Ser., vol. 136. Cambridge Univ. Press, Cambridge (1988)Google Scholar
- 3.Birman, M. Sh., Solomjak, M.Z.: Spectral theory of selfadjoint operators in Hilbert space. Translated from the 1980 Russian original by S. Khrushchev and V. Peller. Mathematics and its Applications (Soviet Series). D. Reidel Publishing Co., Dordrecht (1987)Google Scholar
- 4.Boutet de Monvel L., Grigis A., Helffer B.: Paramétrixes d’opérateurs pseudo-différentiels à caractéristiques multiples. Astérisque 34–35, 93–121 (1976)MathSciNetGoogle Scholar
- 5.Fournais S., Helffer B.: Accurate eigenvalue asymptotics for Neumann magnetic Laplacians. Ann. Inst. Fourier 56, 1–67 (2006)zbMATHMathSciNetCrossRefGoogle Scholar
- 6.Fournais, S., Helffer, B.: Spectral Methods in Surface Superconductivity. Progress in Nonlinear Differential Equations and their Applications, vol. 77. Birkhäuser, Boston (2010)Google Scholar
- 7.Grushin V.: Hypoelliptic differential equations and pseudodifferential operators with operator-valued symbols. Mat. Sb. (N.S.) 88(130), 504–521 (1972)MathSciNetGoogle Scholar
- 8.Guillemin, V., Sternberg, S.: Geometric Asymptotics. Mathematical Surveys, No. 14. AMS, Providence (1977)Google Scholar
- 9.Helffer B.: Sur l’hypoellipticité des opérateurs à caractéristiques multiples (perte de \({\frac{3}{2}}\) dérivées). Mémoire de la SMF 51–52, 13–61 (1977)MathSciNetGoogle Scholar
- 10.Helffer, B.: Théorie Spectrale pour des Opérateurs Globalement Elliptiques. Astérisque, vol. 112. Société mathématique de France, Paris (1984)Google Scholar
- 11.Helffer, B.: Semi-classical Analysis for the Schrödinger Operator and Applications. Lecture Notes in Mathematics, vol. 1336. Springer, Berlin (1988)Google Scholar
- 12.Helffer, B., Kordyukov, Yu.A.: The periodic magnetic Schrödinger operators: spectral gaps and tunneling effect. Trudy Matematicheskogo Instituta Imeni V.A. Steklova 261, 176–187 (2008); translation in Proceedings of the Steklov Institute of Mathematics, 261, 171–182 (2008)Google Scholar
- 13.Helffer, B., Kordyukov, Yu.A.: Semiclassical analysis of Schrödinger operators with magnetic wells. Spectral and Scattering Theory for Quantum Magnetic Systems, Contemp. Math. 500, 105–122 (2009)Google Scholar
- 14.Helffer B., Kordyukov Yu.A.: Spectral gaps for periodic Schrödinger operators with hypersurface magnetic wells: analysis near the bottom. J. Funct. Anal. 257, 3043–3081 (2009)zbMATHMathSciNetCrossRefGoogle Scholar
- 15.Helffer, B., Kordyukov, Yu.A.: Semiclassical spectral asymptotics for a two-dimensional magnetic Schrödinger operator: The case of discrete wells. Spectral Theory and Geometric Analysis. Contemp. Math. 535, 55–78 (2011)Google Scholar
- 16.Helffer B., Kordyukov A.: Semiclassical spectral asymptotics for a two-dimensional magnetic Schrödinger operator II: The case of degenerate wells. Commun. Partial Differ. Equ. 37, 1057–1095 (2012)zbMATHMathSciNetCrossRefGoogle Scholar
- 17.Helffer B., Mohamed A.: Semiclassical analysis for the ground state energy of a Schrödinger operator with magnetic wells. J. Funct. Anal. 138, 40–81 (1996)zbMATHMathSciNetCrossRefGoogle Scholar
- 18.Helffer, B., Morame, A. (2001) Magnetic bottles in connection with superconductivity. J. Funct. Anal. 185, 604–680 (2001). See erratum in http://www.math.u-psud.fr/~helffer/erratum164II
- 19.Helffer B., Nourrigat J.: Hypoellipticité Maximale pour des Opérateurs Polynômes de Champs de Vecteurs. Birkhäuser, Boston (1985)zbMATHGoogle Scholar
- 20.Helffer B., Robert D.: Puits de potentiel généralisés et asymptotique semi-classique. Annales de l’IHP (section Physique théorique) 41, 291–331 (1984)zbMATHMathSciNetGoogle Scholar
- 21.Helffer B., Sjöstrand J.: Multiple wells in the semiclassical limit. I. Commun. Partial Differ. Equ. 9, 337–408 (1984)zbMATHCrossRefGoogle Scholar
- 22.Helffer B., Sjöstrand J.: Effet tunnel pour l’équation de Schrödinger avec champ magnétique. Ann. Scuola Norm. Sup. Pisa Cl. Sci. Sér. 4 14, 625–657 (1987)zbMATHGoogle Scholar
- 23.Helffer, B., Sjöstrand, J.: Equation de Schrödinger avec champ magnétique et équation de Harper. Schrödinger operators (Sønderborg, 1988), Lecture Notes in Phys. vol. 345, pp. 118–197. Springer, Berlin (1989)Google Scholar
- 24.Helffer B., Sjöstrand J.: Analyse semi-classique pour l’équation de Harper (avec application à l’équation de Schrödinger avec champ magnétique). Mém. Soc. Math. France (N.S.) 34, 113 (1988)Google Scholar
- 25.Helffer B., Sjöstrand J.: Semiclassical analysis for Harper’s equation. III. Cantor structure of the spectrum. Mém. Soc. Math. France (N.S.) 39, 1–124 (1989)Google Scholar
- 26.Hörmander L.: The Weyl calculus of pseudodifferential operators. Commun. Pure Appl. Math. 32, 360–444 (1979)CrossRefGoogle Scholar
- 27.Ivrii V.: Magnetic Schrödinger operator: classical and quantum dynamics and spectral asymptotics. Mosc. Math. J. 7, 461–479 (2007)zbMATHMathSciNetGoogle Scholar
- 28.Ivrii, V.: Microlocal Analysis, Sharp Spectral Asymptotics and Applications. Evoluting book available on the home page of V. IvriiGoogle Scholar
- 29.Karasev M.V.: Magneto-metric Hamiltonians on quantum surfaces in the configuration space. Russ. J. Math. Phys. 14, 57–65 (2007)zbMATHMathSciNetCrossRefGoogle Scholar
- 30.Matsumoto H.: Semi-classical asymptotics of eigenvalues for Schrödinger operators with magnetic fields. J. Funct. Anal. 129, 168–190 (1995)zbMATHMathSciNetCrossRefGoogle Scholar
- 31.Matsumoto H., Ueki N.: Spectral analysis of Schrödinger operators with magnetic fields. J. Funct. Anal. 140, 218–255 (1996)zbMATHMathSciNetCrossRefGoogle Scholar
- 32.Montgomery R.: Hearing the zero locus of a magnetic field. Commun. Math. Phys. 168, 651–675 (1995)zbMATHADSCrossRefGoogle Scholar
- 33.Raymond, N.: Little Magnetic Book (2014). Preprint arXiv:1405.7912
- 34.Raymond, N., Vũ Ngọc, S.: Geometry and spectrum in 2D magnetic wells (2013). Preprint arXiv:1306.5054; to appear in Ann. Inst. Fourier (2014)
- 35.Robert, D.: Autour de l’Approximation Semiclassique. Progress in Mathematics, vol. 68. Birkhäuser, Boston (1987)Google Scholar
- 36.Shubin M.: Pseudodifferential Operators and Spectral Theory. Springer, Berlin (1987)zbMATHCrossRefGoogle Scholar
- 37.Sjöstrand J.: Parametrices for pseudo-differential operators with multiple characteristics. Ark. för Mat. 12, 85–130 (1974)zbMATHCrossRefGoogle Scholar
- 38.Sjöstrand J., Zworski M.: Elementary linear algebra for advanced spectral problems. Ann. Inst. Fourier 57, 1–33 (2007)CrossRefGoogle Scholar
- 39.Zworski M.: Semiclassical Analysis. AMS, Providence (2012)zbMATHGoogle Scholar