Super-KMS Functionals for Graded-Local Conformal Nets
- 63 Downloads
- 1 Citations
Abstract
Motivated by a few preceding papers and a question of R. Longo, we introduce super-KMS functionals for graded translation-covariant nets over \({\mathbb{R}}\) with superderivations, roughly speaking as a certain supersymmetric modification of classical KMS states on translation-covariant nets over \({\mathbb{R}}\), fundamental objects in chiral algebraic quantum field theory. Although we are able to make a few statements concerning their general structure, most properties will be studied in the setting of specific graded-local (super-) conformal models. In particular, we provide a constructive existence and partial uniqueness proof of super-KMS functionals for the supersymmetric free field, for certain subnets, and for the super-Virasoro net with central charge \({c\ge 3/2}\). Moreover, as a separate result, we classify bounded super-KMS functionals for graded-local conformal nets over S 1 with respect to rotations.
Keywords
Irreducible Representation Canonical Commutation Relation Cyclic Cocycles Irreducible General Representation Conformal SubnetReferences
- 1.Araki H.: On quasi-free states of CAR and Bogoliubov automorphisms. Publ. Res. Inst. Math. Sci. 6, 385–442 (1970)MathSciNetCrossRefGoogle Scholar
- 2.Araki H.: On quasi-free states of the canonical commutation relations. II. Publ. Res. Inst. Math. Sci. 7, 121–152 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
- 3.Araki H., Masafumi S.: On quasi-free states of the canonical commutation relations. I. Publ. Res. Inst. Math. Sci. 7, 105–120 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
- 4.Böckenhauer J.: Localized endomorphisms of the chiral Ising model. Commun. Math. Phys. 177, 265–304 (1996)ADSCrossRefzbMATHGoogle Scholar
- 5.Bratteli O., Robinson D.: Operator Algebras and Quantum Statistical Mechanics. Springer, Berlin (1997)CrossRefzbMATHGoogle Scholar
- 6.Buchholz D., Grundling H.: Algebraic supersymmetry: a case study. Commun. Math. Phys. 272, 699–750 (2007)MathSciNetADSCrossRefzbMATHGoogle Scholar
- 7.Buchholz D., Junglas P.: On the existence of equilibrium states in local quantum field theory. Commun. Math. Phys. 121, 255–270 (1989)MathSciNetADSCrossRefzbMATHGoogle Scholar
- 8.Buchholz, D., Longo, R.: Graded KMS functionals and the breakdown of supersymmetry. Adv. Theor. Math. Phys. 3, 615–626 (2000). Addendum: Adv. Theor. Math. Phys. 6, 1909–1910 (2000)Google Scholar
- 9.Buchholz D., Mack G., Todorov I.: The current algebra on the circle as a germ of local field theories. Nucl. Phys. B-Proc. Suppl. 5, 20–56 (1988)MathSciNetADSCrossRefGoogle Scholar
- 10.Buchholz D., Schulz-Mirbach H.: Haag duality in conformal quantum field theory. Rev. Math. Phys. 2, 105–125 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
- 11.Camassa P., Longo R., Tanimoto Y., Weiner M.: Thermal states in conformal QFT. I. Commun. Math. Phys. 309, 703–735 (2012)MathSciNetADSCrossRefGoogle Scholar
- 12.Camassa P., Longo R., Tanimoto Y., Weiner M.: Thermal states in conformal QFT. II. Commun. Math. Phys. 315, 771–802 (2012)MathSciNetADSCrossRefzbMATHGoogle Scholar
- 13.Carpi S.: On the representation theory of Virasoro nets. Commun. Math. Phys. 244, 261–284 (2004)MathSciNetADSCrossRefzbMATHGoogle Scholar
- 14.Carpi S., Conti R., Hillier R., Weiner M.: Representations of conformal nets, universal C*-algebras and K-theory. Commun. Math. Phys. 320, 275–300 (2013)MathSciNetADSCrossRefzbMATHGoogle Scholar
- 15.Carpi S., Hillier R., Kawahigashi Y., Longo R.: Spectral triples and the super-Virasoro algebra. Commun. Math. Phys. 295, 71–97 (2010)MathSciNetADSCrossRefzbMATHGoogle Scholar
- 16.Carpi, S., Hillier, R., Kawahigashi, Y., Longo, R., Xu, F.: N = 2 superconformal nets. arXiv:1207.2398v3 [math.OA] (2013)
- 17.Carpi, S., Hillier, R., Longo, R.: Superconformal nets and noncommutative geometry. J. Noncomm. Geom., to appear. arXiv:1304.4062v2 [math.OA] (2013)
- 18.Carpi S., Kawahigashi Y., Longo R.: Structure and classification of superconformal nets. Ann. Henri Poincaré 9, 1069–1121 (2008)MathSciNetADSCrossRefzbMATHGoogle Scholar
- 19.Connes A.: Noncommutative Geometry. Academic Press, New York (1994)zbMATHGoogle Scholar
- 20.Fröhlich J., Gabbiani F.: Operator algebras and conformal field theory. Commun. Math. Phys. 155, 569–640 (1993)ADSCrossRefzbMATHGoogle Scholar
- 21.Fredenhagen, K., Rehren, K.H., Schroer, B.: Superselection sectors with braid group statistics and exchange algebras II. Geometric aspects and conformal covariance. Rev. Math. Phys. (Special Issue), 113–157 (1992)Google Scholar
- 22.Haag R.: Local Quantum Physics. Springer, Berlin (1992)CrossRefzbMATHGoogle Scholar
- 23.Hillier R.: Local-entire cyclic cocycles for graded quantum field nets. Lett. Math. Phys. 104, 271–298 (2014)MathSciNetADSCrossRefzbMATHGoogle Scholar
- 24.Jaffe A., Lesniewski A., Wisniowski M.: Deformations of super-KMS functionals. Commun. Math. Phys. 121, 527–540 (1989)MathSciNetADSCrossRefzbMATHGoogle Scholar
- 25.Kac V.G., Todorov I.T.: Superconformal current algebras and their unitary representations. Commun. Math. Phys. 102, 337–347 (1985)MathSciNetADSCrossRefzbMATHGoogle Scholar
- 26.Kadison R.V., Ringrose J.R.: Fundamentals of the Theory of Operator Algebras. Academic Press, New York (1986)zbMATHGoogle Scholar
- 27.Kastler D.: Cyclic cocycles from graded KMS functionals. Commun. Math. Phys. 121, 345–350 (1989)MathSciNetADSCrossRefGoogle Scholar
- 28.Kawahigashi Y., Longo R.: Noncommutative spectral invariants and black hole entropy. Commun. Math. Phys. 257, 193–225 (2005)MathSciNetADSCrossRefzbMATHGoogle Scholar
- 29.Kawahigashi Y., Longo R., Müger M.: Multi-interval subfactors and modularity of representations in conformal field theory. Commun. Math. Phys. 219, 631–669 (2001)ADSCrossRefzbMATHGoogle Scholar
- 30.Longo R.: Notes for a quantum index theorem. Commun. Math. Phys. 222, 45–96 (2001)MathSciNetADSCrossRefzbMATHGoogle Scholar
- 31.Martin P., Schwinger J.: Theory of many-particle systems. I. Phys. Rev. 115, 1342–1373 (1959)MathSciNetADSCrossRefzbMATHGoogle Scholar
- 32.Moriya, H.: Supersymmetric C*-dynamical systems. arXiv:1001.2622 [math.OA] (2010)
- 33.Moriya H.: On GNS representation of supersymmetric states in C*-dynamical systems. Mathematical quantum field theory and renormalization theory. COE Lect. Note 30, 39–47 (2011)MathSciNetzbMATHGoogle Scholar
- 34.Powers R.T., Størmer E.: Free states of the canonical anticommutation relations. Commun. Math. Phys. 16, 1–33 (1970)ADSCrossRefzbMATHGoogle Scholar
- 35.Remmert R.: Theory of Complex Functions. Springer, Berlin (1991)CrossRefzbMATHGoogle Scholar
- 36.Rocca F., Sirugue M., Testard D.: On a class of equilibrium states under the Kubo-Martin-Schwinger boundary condition. Fermions. Commun. Math. Phys. 13, 317–334 (1969)MathSciNetADSCrossRefGoogle Scholar
- 37.Rocca F., Sirugue M., Testard D.: On a class of equilibrium states under the Kubo-Martin-Schwinger boundary condition. Bosons. Commun. Math. Phys. 19, 119–141 (1970)MathSciNetADSCrossRefGoogle Scholar
- 38.Stoytchev O.: Modular conjugation and the implementation of supersymmetry. Lett. Math. Phys. 79, 235–249 (2007)MathSciNetADSCrossRefzbMATHGoogle Scholar
- 39.Takesaki M., Winnink M.: Local normality in quantum statistical mechanics. Commun. Math. Phys. 30, 129–152 (1973)MathSciNetADSCrossRefzbMATHGoogle Scholar
- 40.Takesaki M.: Theory of operator algebras I. Springer, Berlin (1979)CrossRefGoogle Scholar
- 41.Weiner, M.: Conformal covariance and related properties of chiral QFT. PhD Thesis. Università di Roma “Tor Vergata”, arXiv:math/0703336 [math.OA] (2005)
- 42.Xu F.: Strong additivity and conformal nets. Pac. J. Math. 221, 167–199 (2005)CrossRefzbMATHGoogle Scholar