Annales Henri Poincaré

, Volume 16, Issue 6, pp 1429–1477 | Cite as

Characterization of the Quasi-Stationary State of an Impurity Driven by Monochromatic Light II: Microscopic Foundations

  • Jean-Bernard BruEmail author
  • Walter de Siqueira Pedra


From quantum mechanical first principles only, we rigorously study the time-evolution of a N-level atom (impurity) interacting with an external monochromatic light source within an infinite system of free electrons at thermal equilibrium (reservoir). In particular, we establish the relation between the full dynamics of the compound system and the effective dynamics for the N-level atom, which is studied in detail in Bru et al. (Ann Henri Poincaré 13(6):1305–1370, 2012). Together with Bru et al. (Ann Henri Poincaré 13(6):1305–1370, 2012) the present paper yields a purely microscopic theory of optical pumping in laser physics. The model we consider is general enough to describe gauge invariant atom–reservoir interactions.


Density Matrix Continuous Semigroup Open Quantum System Contraction Semigroup Algebra Versus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Snitzer, E., Young, C.G.: Lasers. A Series of Advances, vol. 2. Edward Arnold, London (1968)Google Scholar
  2. 2.
    Aspect, A., Grynberg, G., Fabre, C.: Introduction to Quantum Optics, vol. XXIX. Cambridge University Press, Cambridge (2010)Google Scholar
  3. 3.
    Bru J.-B., Pedra W., Westrich M.: Characterization of the quasi-stationary state of an impurity driven by monochromatic light I—the effective theory. Ann. Henri Poincaré 13(6), 1305–1370 (2012)CrossRefADSzbMATHGoogle Scholar
  4. 4.
    Dicke R.H.: Coherence in spontaneous radiation processes. Phys. Rev. 93, 99–110 (1954)CrossRefADSzbMATHGoogle Scholar
  5. 5.
    Hepp K., Lieb E.H.: Phase transitions in reservoir driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573–603 (1973)Google Scholar
  6. 6.
    Hepp K., Lieb E.H.: On the superradiant phase transition for molecules in a quantized electromagnetic field: the Dicke maser model. Ann. Phys. 76, 360–404 (1973)CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    Hepp, K., Lieb, E.H.: The laser: a reversible quantum dynamical system with irreversible classical macroscopic motion. In: Moser, J. (ed.) Dynamical Systems, Theory and Applications. Lecture Notes in Physics, vol. 38, pp. 178–208 (1975)Google Scholar
  8. 8.
    Alli G., Sewell G.L.: New methods and structures in the theory of the multi-mode Dicke laser model. J. Math. Phys. 36, 5598–5626 (1995)CrossRefADSzbMATHMathSciNetGoogle Scholar
  9. 9.
    Snitzer, E., Young, C.G.: Lasers. A Series of Advances, vol. 2. Edward Arnold, London (1968)Google Scholar
  10. 10.
    Sewell G.L.: Quantum Mechanics and its Emergent Macrophysics. Princeton University Press, Princeton (2002)zbMATHGoogle Scholar
  11. 11.
    McKeever J., Boca A., Boozer A.D., Buck J.R., Kimble H.J.: Experimental realization of a one-atom laser in the regime of strong coupling. Nature 425, 268–271 (2003)CrossRefADSGoogle Scholar
  12. 12.
    Kato T.: Perturbation Theory for Linear Operators, 2nd edn. Springer, Berlin (1980)Google Scholar
  13. 13.
    Bach, V., de Siqueira Pedra, W., Merkli, M., Sigal, I.M.: Suppression of decoherence by periodic forcing. J. Stat. Phys. (2014). doi: 10.1007/s10955-014-0952-8
  14. 14.
    Derezinski, J., Früboes, R.: Fermi golden rule and open quantum systems. In: Open quantum systems III, vol. 1882. Springer, Berlin pp. 67–116 (2006)Google Scholar
  15. 15.
    Jakšić V., Pillet C.-A.: Non-equilibrium steady states of finite quantum systems coupled to thermal reservoirs. Commun. Math. Phys. 226, 131–162 (2002)CrossRefADSzbMATHGoogle Scholar
  16. 16.
    Spohn H.: An algebraic condition for the approach to equilibrium of an open n-level system. Lett. Math. Phys. 2, 33–38 (1977)CrossRefADSzbMATHMathSciNetGoogle Scholar
  17. 17.
    Abou Salem W.K.: On the quasi-static evolution of nonequilibrium steady states. Ann. Henri Poincaré 8(3), 569–596 (2007)CrossRefADSzbMATHMathSciNetGoogle Scholar
  18. 18.
    Abou Salem W.K., Fröhlich J.: Cyclic thermodynamic processes and entropy production. J. Stat. Phys. 126(3), 431–466 (2007)CrossRefADSzbMATHMathSciNetGoogle Scholar
  19. 19.
    Westrich, M.: Long-time dynamics of open quantum systems. PhD’s thesis, Aarhus University, Department of Mathematics (2011)Google Scholar
  20. 20.
    Bru, J.-B., de Siqueira Pedra, W., Kurig, C.: Heat Production of Non-Interacting Fermions Subjected to Electric Fields. Commun. Pure Appl. Math. (2014, to appear)Google Scholar
  21. 21.
    Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics, vol. II, 2nd edn. Springer, New York (1996)Google Scholar
  22. 22.
    Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics, vol. I, 2nd edn. Springer, New York (1996)Google Scholar
  23. 23.
    Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences, vol. 44, Springer, New-York (1983)Google Scholar
  24. 24.
    Jakšić V., Pillet C.-A.: On a model for quantum friction II. Fermi’s golden rule and dynamics at positive temperature. Commun. Math. Phys. 176, 619–644 (1996)CrossRefADSzbMATHGoogle Scholar
  25. 25.
    Engel K.-J., Nagel R.: One-Parameter Semigroups for Linear Evolution Equations. Springer, Berlin (2000)zbMATHGoogle Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  1. 1.Departamento de Matemáticas, Facultad de Ciencia y TecnologíaUniversidad del País VascoBilbaoSpain
  2. 2.BCAM-Basque Center for Applied MathematicsBilbaoSpain
  3. 3.Ikerbasque, Basque Foundation for ScienceBilbaoSpain
  4. 4.Departamento de Fisica Matematica, Instituto de FisicaUniversidade de Sao Paulo8Sao PauloBrazil

Personalised recommendations