The Altshuler–Shklovskii Formulas for Random Band Matrices II: The General Case
- 89 Downloads
- 4 Citations
Abstract
The Altshuler–Shklovskii formulas (Altshuler and Shklovskii, BZh Eksp Teor Fiz 91:200, 1986) predict, for any disordered quantum system in the diffusive regime, a universal power law behaviour for the correlation functions of the mesoscopic eigenvalue density. In this paper and its companion (Erdős and Knowles, The Altshuler–Shklovskii formulas for random band matrices I: the unimodular case, 2013), we prove these formulas for random band matrices. In (Erdős and Knowles, The Altshuler–Shklovskii formulas for random band matrices I: the unimodular case, 2013) we introduced a diagrammatic approach and presented robust estimates on general diagrams under certain simplifying assumptions. In this paper, we remove these assumptions by giving a general estimate of the subleading diagrams. We also give a precise analysis of the leading diagrams which give rise to the Altschuler–Shklovskii power laws. Moreover, we introduce a family of general random band matrices which interpolates between real symmetric (β = 1) and complex Hermitian (β = 2) models, and track the transition for the mesoscopic density–density correlation. Finally, we address the higher-order correlation functions by proving that they behave asymptotically according to a Gaussian process whose covariance is given by the Altshuler–Shklovskii formulas.
Keywords
Density Correlation Band Matrix Band Matrice Versus Main Random BandReferences
- 1.Altshuler, B.L., Shklovskii, B.I.: Repulsion of energy levels and the conductance of small metallic samples. Zh. Eksp. Teor. Fiz. (Sov. Phys. JETP) 91 (64), 220 (1986)Google Scholar
- 2.Chalker J.T., Kravtsov V.E., Lerner I.V.: Spectral rigidity and eigenfunction correlations at the Anderson transition. J. Exp. Theor. Phys. Lett. 64, 386–392 (1996)CrossRefGoogle Scholar
- 3.Erdős, L., Knowles, A.: The Altshuler–Shklovskii formulas for random band matrices I: the unimodular case (2013, preprint). arXiv:1309.5106
- 4.Erdős L., Knowles A.: Quantum diffusion and delocalization for band matrices with general distribution. Ann. H. Poincaré 12, 1227–1319 (2011)CrossRefGoogle Scholar
- 5.Erdős L., Knowles A.: Quantum diffusion and eigenfunction delocalization in a random band matrix model. Commun. Math. Phys. 303, 509–554 (2011)CrossRefADSGoogle Scholar
- 6.Erdős L., Knowles A., Yau H.-T., Yin J.: The local semicircle law for a general class of random matrices. Electron. J. Probab. 18, 1–58 (2013)Google Scholar
- 7.Feldheim O.N., Sodin S.: A universality result for the smallest eigenvalues of certain sample covariance matrices. Geom. Funct. Anal. 20, 88–123 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
- 8.Fyodorov Y.V., Mirlin A.D.: Scaling properties of localization in random band matrices: a σ-model approach. Phys. Rev. Lett. 67, 2405–2409 (1991)CrossRefADSzbMATHMathSciNetGoogle Scholar
- 9.Mirlin A.D., Evers F.: Multifractality and critical fluctuations at the Anderson transition. Phys. Rev. B 62(12), 7920–7933 (2000)CrossRefADSGoogle Scholar
- 10.Mirlin A.D., Fyodorov Y.V., Dittes F.-M., Quezada J., Seligman T.H.: Transition from localized to extended eigenstates in the ensemble of power-law random banded matrices. Phys. Rev. E 54(1), 3221–3230 (1996)CrossRefADSGoogle Scholar
- 11.Sodin S.: The spectral edge of some random band matrices. Ann. Math. 172(3), 2223–2251 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
- 12.Spencer, T.: Random banded and sparse matrices, Chap. 23. In: Akemann, G., Baik, J., Di Francesco, P. (eds.) Oxford Handbook of Random Matrix Theory (2011)Google Scholar