Annales Henri Poincaré

, Volume 16, Issue 2, pp 609–640 | Cite as

BTZ Black Hole Entropy and the Turaev–Viro Model

  • Marc GeillerEmail author
  • Karim Noui


We show the explicit agreement between the derivation of the Bekenstein–Hawking entropy of a Euclidean BTZ black hole from the point of view of spin foam models and canonical quantization. This is done by considering a graph observable (corresponding to the black hole horizon) in the Turaev–Viro state sum model, and then analytically continuing the resulting partition function to negative values of the cosmological constant.


Black Hole Partition Function Black Hole Entropy Loop Quantum Gravity Solid Torus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bañados, M., Teitelboim, C., Zanelli, J.: The black hole in three-dimensional spacetime. Phys. Rev. Lett. 69, 1849 (1992). arXiv:hep-th/9204099
  2. 2.
    Bañados, M., Henneaux, M., Teitelboim, C., Zanelli, J.: Geometry of the 2+1 black hole. Phys. Rev. D 48, 1506 (1993) arXiv:gr-qc/9302012
  3. 3.
    Carlip, S.: Conformal field theory, (2+1)-dimensional gravity, and the BTZ black hole. Class. Quant. Gravity 22, R85–R124 (2005). arXiv:gr-qc/0503022
  4. 4.
    Brown J.D., Henneaux M.: Central charges in the canonical realization of asymptotic symmetries: an example from three-dimensional gravity. Commun. Math. Phys. 104, 207 (1986)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Carlip, S.: What we don’t know about BTZ black hole entropy. Class. Quant. Gravity 15, 3609 (1998). arXiv:hep-th/9806026
  6. 6.
    Frodden, E., Geiller, M., Noui, K., Perez, A.: Statistical entropy of a BTZ black hole from loop quantum gravity. JHEP 5, 139 (2013). arXiv:1212.4473 [gr-qc]
  7. 7.
    Suneeta, V., Kaul, R.K., Govindarajan,T.R.: BTZ black hole entropy from Ponzano–Regge gravity. Mod. Phys. Lett. A 14, 349 (1999). arXiv:gr-qc/9811071
  8. 8.
    García-Islas, J.M.: BTZ black hole entropy: a spin foam model description. Class. Quant. Gravity 25, 245001 (2008). arXiv:0804.2082 [gr-qc]
  9. 9.
    García-Islas, J.M.: BTZ black hole entropy in loop quantum gravity and in spin foam models (2013). arXiv:1303.2773 [gr-qc]
  10. 10.
    Freidel, L., Livine, E.: Spin networks for non-compact groups. J. Math. Phys. 44, 1322 (2003). arXiv:hep-th/0205268
  11. 11.
    Dupuis, M., Girelli, F.: Observables in loop quantum gravity with a cosmological constant (2013). arXiv:1311.6841 [gr-qc]
  12. 12.
    Bonzom, V., Dupuis, M., Girelli, F., Livine, E.R.: Deformed phase space for 3D loop gravity and hyperbolic discrete geometries (2014). arXiv:1402.2323 [gr-qc]
  13. 13.
    Pranzetti, D.: Turaev–Viro amplitudes from 2+1 loop quantum gravity (2014). arXiv:1402.2384 [gr-qc]
  14. 14.
    Geer, N., Patureau-Mirand, B., Turaev, V.: Modified 6j-symbols and 3-manifold invariants (2009). arXiv:0910.1624 [math.GT]
  15. 15.
    Geer, N., Patureau-Mirand, B.: Polynomial 6j-symbols and states sums (2009). arXiv:0911.1353 [math.GT]
  16. 16.
    Costantino, F., Murakami, J.: On \({{\rm SL}(2, \mathbb{C})}\) quantum 6j-symbol and its relation to the hyperbolic volume (2010). arXiv:1005.4277 [math.GT]
  17. 17.
    Carlip, S., Teitelboim, C.: Aspects of black hole quantum mechanics and thermodynamics in 2+1 dimensions. Phys. Rev. D 51, 622 (1995). arXiv:gr-qc/9405070
  18. 18.
    Turaev V.G., Viro O.Y.: State sum invariants of 3-manifolds and quantum 6j-symbols. Topology 31, 865 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Deser S., Jackiw R., Templeton S.: Topologically massive gauge theory. Ann. Phys. 140, 372 (1982)ADSCrossRefMathSciNetGoogle Scholar
  20. 20.
    Alexandrov, S., Geiller, M., Noui, K.: Spin foams and canonical quantization. SIGMA 8, 055 (2012). arXiv:1112.1961 [gr-qc]
  21. 21.
    Turaev, V.G., Virelizier, A.: On two approaches to 3-dimensional TQFTs (2012). arXiv:1006.3501 [math.GT]
  22. 22.
    Mizoguchi, S., Tada, T.: 3-dimensional gravity from the Turaev–Viro invariant. Phys. Rev. Lett. 68, 1795 (1992). arXiv:hep-th/9110057
  23. 23.
    Ponzano, G., Regge, T.: In: Block F. (ed.) Spectroscopy and group theoretical methods in physics. North Holland (1968)Google Scholar
  24. 24.
    Freidel, L., Louapre, D.: Ponzano–Regge model revisited I: Gauge fixing, observables and interacting spinning particles. Class. Quant. Gravity 21, 5685 (2004) arXiv:hep-th/0401076
  25. 25.
    Freidel, L., Louapre, D.: Ponzano–Regge model revisited II: equivalence with Chern–Simons. (2004). arXiv:gr-qc/0410141
  26. 26.
    Freidel, L., Livine, E.R.: Ponzano–Regge model revisited III: Feynman diagrams and effective field theory. Class. Quant. Gravity 23, 2021 (2006). arXiv:hep-th/0502106
  27. 27.
    Barrett, J.W., Naish-Guzman, I.: The Ponzano–Regge model. Class. Quant. Gravity 26, 155014 (2009). arXiv:0803.3319 [gr-qc]
  28. 28.
    Karowski M., Muller W., Scharder R.: State sum invariants of compact 3-manifolds with boundary and 6j-symbols. J. Phys. A Math. Gen. 25, 4847 (1992)ADSCrossRefzbMATHGoogle Scholar
  29. 29.
    Carbone G., Carfora M., Marzuoli A.: Wigner symbols and combinatorial invariants of three-manifolds with boundary. Commun. Math. Phys. 212, 571 (2000)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    O’Loughlin, M.: Boundary actions in Ponzano–Regge discretization, quantum groups and AdS(3). Adv. Theor. Math. Phys. 6, 795 (2003). arXiv:gr-qc/0002092
  31. 31.
    Dittrich, B., Kaminski, W.: Topological lattice field theories from intertwiner dynamics (2013). arXiv:1311.1798 [gr-qc]
  32. 32.
    Govindarajan, T.R., Kaul, R.K., Suneeta, V.: Logarithmic correction to the Bekenstein–Hawking entropy of the BTZ black hole. Class. Quant. Gravity 18, 2877 (2001). arXiv:gr-qc/0104010
  33. 33.
    Suneeta, V.: Aspects of black holes in anti-deSitter space. PhD thesis, IMSC Chennai (2001)Google Scholar
  34. 34.
    Barrett, J.W., García-Islas, J.M., Martins, J.F.: Observables in the Turaev–Viro and Crane–Yetter models. J. Math. Phys. 48, 093508 (2007). arXiv:math/0411281
  35. 35.
    Witten E.: Quantum field theory and the Jones polynomial. Commun. Math. Phys. 121, 351 (1989)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  36. 36.
    Reshetikhin N., Turaev V.: Ribbon graphs and their invariants derived fron quantum groups. Commun. Math. Phys. 127, 1 (1990)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  37. 37.
    Reshetikhin N., Turaev V.: Invariants of 3-manifolds via link polynomials and quantum groups. Invent. Math. 103, 547 (1991)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  38. 38.
    Freidel, L., Noui, K., Roche, P.: 6J symbols duality relations. J. Math. Phys. 48, 113512 (2007). arXiv:hep-th/0604181
  39. 39.
    Kaul R.K., Majumdar P.: Quantum black hole entropy. Phys. Lett. B 439, 267 (1998)ADSCrossRefMathSciNetGoogle Scholar
  40. 40.
    Engle, J., Noui, K., Perez, A., Pranzetti, D.: The SU(2) black hole entropy revisited. JHEP 1105, 016 (2011). arXiv:1103.2723 [gr-qc]
  41. 41.
    Rovelli, C.: Black hole entropy from loop quantum gravity. Phys. Rev. Lett. 77, 3288 (1996). arXiv:gr-qc/9603063
  42. 42.
    Ashtekar, A., Baez, J., Krasnov, K.: Quantum geometry of isolated horizons and black hole entropy. Adv. Theor. Math. Phys. 4, 1 (2000). arXiv:gr-qc/0005126
  43. 43.
    Meissner, K.A.: Black hole entropy in loop quantum gravity. Class. Quant. Gravity 21, 5245 (2004). arXiv:gr-qc/0407052
  44. 44.
    Agullo, I., Barbero, J.F., Diaz-Polo, J., Fernandez-Borja, E., Villaseñor, E.J.S.: Black hole state counting in loop quantum gravity: a number theoretical approach. Phys. Rev. Lett. 100, 211301 (2008). arXiv:gr-qc/0005126
  45. 45.
    Engle, J., Perez, A., Noui, K.: Black hole entropy and SU(2) Chern–Simons theory. Phys. Rev. Lett. 105, 031302 (2010). arXiv:0905.3168 [gr-qc]
  46. 46.
    Engle, J., Noui, K., Perez, A., Pranzetti, D.: Black hole entropy from an SU(2)-invariant formulation of type I isolated horizons. Phys. Rev. D 82, 044050 (2010). arXiv:1006.0634 [gr-qc]
  47. 47.
    Frodden, E., Geiller, M., Noui, K., Perez, A.: Black hole entropy from complex Ashtekar variables (2012). arXiv:1212.4060 [gr-qc]
  48. 48.
    Ashtekar A.: New variables for classical and quantum gravity. Phys. Rev. Lett. 57, 2244 (1986)ADSCrossRefMathSciNetGoogle Scholar
  49. 49.
    Bodendorfer, N.: Black hole entropy from loop quantum gravity in higher dimensions. Phys. Lett. B 726, 887 (2013). arXiv:1307.5029 [gr-qc]
  50. 50.
    Geiller, M., Noui, K., Perez, A.: In preparationGoogle Scholar
  51. 51.
    Ben Achour, J., Geiller, M., Noui, K., Yu, C.: Testing the role of the Barbero–Immirzi parameter and the choice of connection in loop quantum gravity (2013). arXiv:1306.3241 [gr-qc]
  52. 52.
    Carlip, S.: Logarithmic corrections to black hole entropy from the Cardy formula. Class. Quant. Gravity 17, 4175 (2000). arXiv:gr-qc/0005017
  53. 53.
    Carlip, S.: Entropy from conformal field theory at Killing horizons. Class. Quant. Gravity 16, 3327 (1999). arXiv:gr-qc/9906126
  54. 54.
    Carlip, S.: Black hole entropy from conformal field theory in any dimension. Phys. Rev. Lett. 82, 2828 (1999). arXiv:hep-th/9812013
  55. 55.
    Carlip, S.: Effective conformal descriptions of black hole entropy. Entropy 13(7), 1355 (2011) arXiv:1107.2678 [gr-qc]
  56. 56.
    Carlip, S.: Effective conformal descriptions of black hole entropy: a review (2012). arXiv:1207.1488 [gr-qc]
  57. 57.
    Kirillov, A.N., Reshetikhin, N.Y.: Representations of the algebra \({{\rm U}_q(\mathfrak{sl}_2)}\), q-orthogonal polynomials and invariants of links. In: Kac, V.G. (ed.) Infinite dimensional Lie algebras and groups, Advanced Series in Mathematical Physics, pp. 285. World Scientific, Singapore (1988)Google Scholar
  58. 58.
    Lienert C.R., Butler P.H.: Racah–Wigner algebra for q-deformed algebras. J. Phys. A Math. Gen. 25, 1223 (1992)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  59. 59.
    Nomura M.: Relations for Clebsch–Gordan and Racah coefficients in \({\mathfrak{su}_q(2)}\) and Yang–Baxter equations. J. Math. Phys. 30, 2397 (1989)ADSCrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  1. 1.Physics Department, Institute for Gravitation and the Cosmos Penn StateUniversity ParkState CollegeUSA
  2. 2.Laboratoire de Mathématiques et Physique ThéoriqueUniversité François RabelaisToursFrance
  3. 3.Laboratoire Astroparticule et Cosmologie (APC)Université Paris Diderot Paris 7ParisFrance

Personalised recommendations