Large-Distance and Long-Time Asymptotic Behavior of the Reduced Density Matrix in the Non-Linear Schrödinger Model
- 96 Downloads
- 6 Citations
Abstract
Starting from the form factor expansion in finite volume, we derive the multidimensional generalization of the so-called Natte series for the time- and distance-dependent reduced density matrix at zero temperature in the non-linear Schrödinger model. This representation allows one to read-off straightforwardly the long-time/large-distance asymptotic behaviour of this correlator. This method of analysis reduces the complexity of the computation of the asymptotic behaviour of correlation functions in the so-called interacting integrable models, to the one appearing in free-fermion equivalent models. We compute explicitly the first few terms appearing in the asymptotic expansion. Part of these terms stems from excitations lying away from the Fermi boundary, and hence go beyond what can be obtained using the CFT/Luttinger liquid-based predictions.
Keywords
Form Factor Holomorphic Function Thermodynamic Limit Reduce Density Matrix Translation OperatorReferences
- 1.Aizenberg, I.A., Yuzhakov, A.P.: Integral Representations and Residues in Multidimensional Complex Analysis. American Mathematical Society, Graduate texts in Mathematics, vol. 58 (1978)Google Scholar
- 2.Berkovich A., Murthy G.: Time-dependent multi-point correlation functions of the non-linear Schrödinger model. Phys. Lett. A142, 121–127 (1989)ADSCrossRefMathSciNetGoogle Scholar
- 3.Blöte H.W.J., Cardy J.L., Nightingale M.P.: Conformal invariance, the central charge, and universal finite-size amplitudes at criticality. Phys. Rev. Lett. 56, 742–745 (1986)ADSCrossRefGoogle Scholar
- 4.Bogoliubov, N.M., Izergin, A.G., Korepin, V.E.: Quantum Inverse Scattering Method, Correlation Functions and Algebraic Bethe Ansatz. Cambridge monographs on mathematical physics (1993)Google Scholar
- 5.Bogoliubov N.M., Izergin A.G., Korepin V.E.: Finite-size effects and critical indices of 1D quantum models. Pisma ZhETF 44, 405–407 (1986)Google Scholar
- 6.Boos, H.E., Jimbo, M., Miwa, T., Smirnov, F., Takeyama, Y.: Fermionic basis for space of states of operators in the XXZ model. hep-th/0702086
- 7.Boos H.E., Jimbo M., Miwa T., Smirnov F., Takeyama Y.: Algebraic representation of correlation functions in integrable spin chains. Ann. H. Poincaré 7, 1395–1428 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
- 8.Boos H.E., Jimbo M., Miwa T., Smirnov F., Takeyama Y.: Hidden Grassmann structure in the XXZ model. Comm. Math. Phys. 272, 263–281 (2007)ADSCrossRefzbMATHMathSciNetGoogle Scholar
- 9.Boos H.E., Jimbo M., Miwa T., Smirnov F., Takeyama Y.: Hidden Grassmann structure in the XXZ model II: creation operators. Comm. Math. Phys. 286, 875–932 (2009)ADSCrossRefzbMATHMathSciNetGoogle Scholar
- 10.Boos, H.E., Korepin, V.E.: Evaluation of integrals representing correlations in XXX Heisenberg spin chains. Math. Phys. Odyssey 2001: Integrable models and beyond, vol. 23, pp. 65–108 (2002)Google Scholar
- 11.Cardy J.L.: Conformal invariance and universality in finite-size scaling. J. Phys. A Math. Gen. 17, L385–L387 (1984)ADSCrossRefMathSciNetGoogle Scholar
- 12.Caux J.-S., Imambekov A., Panfil M., Shashi A.: Exact prefactors in static and dynamic correlation functions of 1D quantum integrable models: applications to the Calogero-Sutherland, Lieb-Liniger and XXZ models. Phys. Rev. B 85, 155136 (2012)ADSCrossRefGoogle Scholar
- 13.Cheng H., Wu T.T.: Theory of Toeplitz determinants and the spin correlations functions of the two dimensionnal Ising model III. Phys. Rev. 164, 719–735 (1967)ADSCrossRefGoogle Scholar
- 14.Damerau J., Gohmann F., Hasenclever N.P., Klumper A.: Density matrices for finite segments of Heisenberg chains of arbitrary length. J. Phys. A Math. Theor. 40, 4439–4453 (2007)ADSCrossRefzbMATHMathSciNetGoogle Scholar
- 15.Deguchi T., Matsui C.: Form factors of integrable higher-spin XXZ chains and the affine quantum-group symmetry. Nucl. Phys. B 814, 409–438 (2009)ADSMathSciNetGoogle Scholar
- 16.Deguchi T., Matsui C.: Correlation functions of the integrable higher-spin XXX and XXZ spin chains through the fusion method. Nucl. Phys. B 831, 389–407 (2010)ADSMathSciNetGoogle Scholar
- 17.Deift P.A., Zhou X.: A steepest descent method for oscillatory Riemann-Hilbert problems. Asymptotics of the mKdV equation. Ann. Math. 137, 297–370 (1993)CrossRefMathSciNetGoogle Scholar
- 18.Destri C., DeVega H.J.: New thermodynamic Bethe Ansatz equations without strings. Phys. Rev. Lett 69, 2313–2317 (1992)ADSCrossRefzbMATHMathSciNetGoogle Scholar
- 19.Destri C., DeVega H.J.: Unified approach to thermodynamic Bethe Ansatz and finite size corrections for lattice models and field theories. Nucl. Phys. B 438, 413–454 (1995)ADSCrossRefzbMATHMathSciNetGoogle Scholar
- 20.Dorlas T.C.: Orthogonality and completeness of the Bethe Ansatz eigenstates of the nonlinear Schrödinger model. Comm. Math. Phys. 154(2), 347–376 (1993)ADSCrossRefzbMATHMathSciNetGoogle Scholar
- 21.Faddeev, L.D.: How Algebraic Bethe Ansatz works for integrable model. Les Houches lectures (1996)Google Scholar
- 22.Fisher M.E.: Quantum corrections to critical-point behavior. Phys. Rev. Lett. 16, 11–14 (1966)ADSCrossRefGoogle Scholar
- 23.Girardeau M.: Relationship between systems of impenetrable Bosons and Fermions in one dimension. J. Math. Phys. 1, 516–523 (1960)ADSCrossRefzbMATHMathSciNetGoogle Scholar
- 24.Göhmann F., Klümper A., Seel A.: Integral representations for correlation functions of the XXZ chain at finite temperature. J. Phys. A Math. Gen. 37, 7625–7652 (2004)ADSCrossRefzbMATHGoogle Scholar
- 25.Griffiths R.B.: Dependence of critical indicies on a parameter. Phys. Rev. Lett. 24, 1479–1482 (1970)ADSCrossRefGoogle Scholar
- 26.Haldane F.D.M.: Demonstration of the “Luttinger liquid” character of Bethe-ansatz soluble models of 1-D quantum fluids. Phys. Lett. A 81, 153–155 (1981)ADSCrossRefMathSciNetGoogle Scholar
- 27.Haldane F.D.M.: Effective harmonic fluid approach to low-energy properties of one-dimensional quantum fluids. Phys. Rev. Lett. 47, 1840–1843 (1981)ADSCrossRefGoogle Scholar
- 28.Haldane F.D.M.: Luttinger liquid theory of one-dimensional quantum fluids: I. Properties of the Luttinger model and their extension to the general 1D interacting spinless Fermi gas. J. Phys. C Solid State Phys. 14, 2585–2609 (1981)ADSCrossRefGoogle Scholar
- 29.Imambekov A., Glazman L.I.: Exact exponents of edge singularities in dynamic correlation functions of 1D Bose gas. Phys. Rev. Lett. 100, 206805 (2008)ADSCrossRefGoogle Scholar
- 30.Its A.R., Izergin A.G., Korepin V.E.: Long-distance asymptotics of temperature correlators of the impenetrable Bose gas. Comm. Math. Phys. 130, 471–488 (1990)ADSCrossRefzbMATHMathSciNetGoogle Scholar
- 31.Its A.R., Izergin A.G., Korepin V.E., Slavonv N.A.: Differential equations for quantum correlation functions. Int. J. Mod. Phys. B4, 1003–1037 (1990)ADSCrossRefGoogle Scholar
- 32.Its A.R., Izergin A.G., Korepin V.E., Slavonv N.A.: Temperature correlations of quantum spins. Phys. Rev. Lett. 70, 1704 (1993)ADSCrossRefGoogle Scholar
- 33.Its A.R., Izergin A.G., Korepin V.E., Varguzin G.G.: Large-time and distance asymptotics of the correlator of the impenetrable bosons at finite temperature. Phys. D 54, 351 (1991)CrossRefGoogle Scholar
- 34.Its A.R., Slavonv N.A.: On the Riemann-Hilbert approach to the asymptotic analysis of the correlation functions of the Quantum Nonlinear Schrdinger equation. Non-free fermion case. Int. J. Mod. Phys. B4, 1003–1037 (1990)ADSCrossRefGoogle Scholar
- 35.Izergin A.G., Korepin V.E.: Lattice versions of quantum field theory models in two dimensions. Nucl. Phys. B 205, 401–413 (1982)ADSCrossRefMathSciNetGoogle Scholar
- 36.Izergin A.G., Korepin V.E.: The quantum inverse scattering method approach to correlation functions. Comm. Math. Phys. 94, 67–92 (1984)ADSCrossRefzbMATHMathSciNetGoogle Scholar
- 37.Izergin A.G., Korepin V.E.: Correlation functions for the Heisenberg XXZ antiferromagnet. Comm. Math. Phys. 99, 271–302 (1985)ADSCrossRefzbMATHMathSciNetGoogle Scholar
- 38.Jimbo M., Kedem R., Kojima T., Konno H., Miwa T.: XXZ chain with a boundary. Nucl. Phys. B 441, 437–470 (1995)ADSCrossRefzbMATHMathSciNetGoogle Scholar
- 39.Jimbo M., Miki K., Miwa T., Nakayashiki A.: Correlation functions of the XXZ model for Δ < −1. Phys. Lett. A 168, 256–263 (1992)ADSCrossRefMathSciNetGoogle Scholar
- 40.Jimbo M., Miwa T.: QKZ equation with —q—=1 and correlation functions of the XXZ model in the gapless regime. J. Phys. A 29, 2923–2958 (1996)ADSCrossRefzbMATHMathSciNetGoogle Scholar
- 41.Jimbo M., Miwa T., Smirnov F.: Hidden Grassman structure in the XXZ model V: sine-Gordon model. Lett. Math. Phys 96, 325–365 (2011)ADSCrossRefzbMATHMathSciNetGoogle Scholar
- 42.Jimbo, M., Miwa, T., Smirnov, F.: On one-point functions of descendants in sine-Gordon model. hep-th: 0912.0934Google Scholar
- 43.Kitanine, N., Kozlowski, K.K., Maillet, J.-M., Slavnov, N.A., Terras, V.: Form factor approach to the asymptotic behavior of correlation functions in critical models. J. Stat. Mech., 12010 (2011)Google Scholar
- 44.Kitanine, N., Kozlowski, K.K., Maillet, J.-M., Slavnov, N.A., Terras, V.: Thermodynamic limit of particle–hole form factors in the massless XXZ Heisenberg chain. J. Stat. Mech., 05028 (2011)Google Scholar
- 45.Kitanine N., Kozlowski K.K., Maillet J.-M., Slavnov N.A., Terras V.: Algebraic Bethe Ansatz approach to the asymptotics behavior of correlation functions. J. Stat. Mech Th. Exp. 04, 04003 (2009)CrossRefMathSciNetGoogle Scholar
- 46.Kitanine N., Kozlowski K.K., Maillet J.-M., Slavnov N.A., Terras V.: On the thermodynamic limit of form factors in the massless XXZ Heisenberg chain. J. Math. Phys. 50, 095209 (2009)ADSCrossRefMathSciNetGoogle Scholar
- 47.Kitanine N., Maillet J.-M., Slavnov N.A., Terras V.: Emptiness formation probability of the XXZ spin-1/2 Heisenberg chain at Delta = 1/2. J. Phys. A Math. Gen. 35, L385–L391 (2002)ADSCrossRefzbMATHMathSciNetGoogle Scholar
- 48.Kitanine N., Maillet J.-M., Slavnov N.A., Terras V.: Spin–spin correlation functions of the XXZ-1/2 Heisenberg chain in a magnetic field. Nucl. Phys. B 641, 487–518 (2002)ADSCrossRefzbMATHMathSciNetGoogle Scholar
- 49.Kitanine N., Maillet J.-M., Slavnov N.A., Terras V.: Dynamical correlation functions of the XXZ spin-1/2 chain. Nucl. Phys. B 729, 558–580 (2005)ADSCrossRefzbMATHMathSciNetGoogle Scholar
- 50.Kitanine N., Maillet J.-M., Slavnov N.A., Terras V.: Exact results for the sigma-z two-point function of the XXZ chain at Delta = 1/2. J. Stat. Mech. 0509, L002 (2005)Google Scholar
- 51.Kitanine N., Maillet J.-M., Slavnov N.A., Terras V.: Master equation for spin–spin correlation functions of the XXZ chain. Nucl. Phys. B 712, 600–622 (2005)ADSCrossRefzbMATHMathSciNetGoogle Scholar
- 52.Kitanine N., Maillet J.-M., Terras V.: Correlation functions of the XXZ Heisenberg spin-1/2 chain in a magnetic field. Nucl. Phys. B 567, 554–582 (2000)ADSCrossRefzbMATHMathSciNetGoogle Scholar
- 53.Kitanine N., Maillet J.-M., Terras V.: Form factors of the XXZ Heisenberg spin-1/2 finite chain. J. Phys. A. Math. Gen. 35, L753 (2002) 10502ADSCrossRefzbMATHMathSciNetGoogle Scholar
- 54.Klümper A., Batchelor M.T., Pearce P.A.: Central charges for the 6- and 19-vertex models with twisted boundary conditions. J. Phys. A. Math. Gen. 24, 3111–3133 (1991)ADSCrossRefzbMATHGoogle Scholar
- 55.Klümper A., Wehner T., Zittartz J.: Conformal spectrum of the 6-vertex model. J. Phys. A. Math. Gen. 26, 2815–2827 (1993)ADSCrossRefzbMATHGoogle Scholar
- 56.Kojima T., Korepin V.E., Slavonv N.A.: Determinant representation for dynamical correlation functions of the quantum nonlinear Schrödinger equation. Comm. Math. Phys. 188, 657–689 (1997)ADSCrossRefzbMATHMathSciNetGoogle Scholar
- 57.Korepin V.E., Slavnov N.A.: Correlation functions of fields in one-dimensional Bose gas. Comm. Math. Phys. 136, 633–644 (1991)ADSCrossRefzbMATHMathSciNetGoogle Scholar
- 58.Korepin V.E., Slavnov N.A.: The new identity for the scattering matrix of exactly solvable models. Eur. Phys. J. B 5, 555–557 (1998)ADSCrossRefMathSciNetGoogle Scholar
- 59.Korepin V.E.: Dual field formulation of quantum integrable models. Comm. Math. Phys. 113, 177–190 (1987)ADSCrossRefzbMATHMathSciNetGoogle Scholar
- 60.Korepin V.E., Slavnov N.A.: The time dependent correlation function of an impenetrable Bose gas as a Fredholm minor I. Comm. Math. Phys. 129, 103–113 (1990)ADSCrossRefzbMATHMathSciNetGoogle Scholar
- 61.Korepin V.E., Slavnov N.A.: The form factors in the finite volume. Int. J. Mod. Phys. B 13, 2933–2942 (1999)ADSCrossRefzbMATHMathSciNetGoogle Scholar
- 62.Kozlowski K.K.: Riemann–Hilbert approach to the time-dependent generalized sine kernel. Adv. Theor. Math. Phys. 15(6), 1655–1743 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
- 63.Kozlowski, K.K., Maillet, J.-M., Slavnov, N.A.: Long-distance behavior of temperature correlation functions of the quantum one-dimensional Bose gas. J. Stat. Mech. Th. Exp., 03018 (2011)Google Scholar
- 64.Kozlowski K.K.: On form factors of the conjugated field in the non-linear Schrödinger model. J. Math. Phys. 52, 083302 (2011)ADSCrossRefMathSciNetGoogle Scholar
- 65.Kozlowski, K.K., Terras, V.: Long-time and large-distance asymptotic behavior of the current–current correlators in the non-linear Schrödinger model. J. Stat. Mech., 09013 (2011)Google Scholar
- 66.Lieb E.H., Liniger W.: Exact analysis of an interacting Bose gas. I. The general solution and the ground state. Phys. Rev. 130, 1605–1616 (1963)ADSCrossRefzbMATHMathSciNetGoogle Scholar
- 67.Luther A., Peschel I.: Calculation of critical exponents in two dimensions from quantum field theory in one dimension. Phys. Rev. B 12(9), 3908–3917 (1975)ADSCrossRefGoogle Scholar
- 68.McCoy B.M., Perk J.H.H., Shrock R.E.: Correlation functions of the transverse Ising chain at the critical field for large temporal and spacial separation. Nucl. Phys. B 220, 269–282 (1983)ADSCrossRefMathSciNetGoogle Scholar
- 69.McCoy B.M., Perk J.H.H., Shrock R.E.: Time-dependent correlation functions of the transverse Ising chain at the critical magnetic field. Nucl. Phys. B 220, 35–47 (1983)ADSCrossRefMathSciNetGoogle Scholar
- 70.McCoy B.M., Wu T.T.: Theory of Toeplitz determinants and the spin correlations functions of the two dimensionnal Ising model IV. Phys. Rev. 162, 436–475 (1967)ADSCrossRefGoogle Scholar
- 71.McCoy B.M., Wu T.T.: The Two-Dimensional Ising Model. Lecture Notes in Physics, vol 246. Harvard University Press, Cambridge (1973)CrossRefGoogle Scholar
- 72.Müller G., Shrock R.E.: Dynamic correlation functions for one-dimensional quantum-spin systems: new results based on a rigorous approach. Phys. Rev. B 29, 288–301 (1984)ADSCrossRefMathSciNetGoogle Scholar
- 73.Oota T.: Quantum projectors and local operators in lattice integrable models. J. Phys. A. Math. Gen. 37, 441–452 (2004)ADSCrossRefzbMATHMathSciNetGoogle Scholar
- 74.Polyakov A.M.: Conformal symmetry of critical fluctuations. Pis. ZhETP 12, 538–541 (1970)Google Scholar
- 75.Sato, J., Shiroishi, M., Takahashi, M.: Exact evaluation of density matrix elements for the Heisenberg chain. J. Stat. Mech, 12017 (2006)Google Scholar
- 76.Simons B.: Notes on infinite dimensional determinants. Adv. Math. 24, 244–273 (1977)CrossRefGoogle Scholar
- 77.Sklyanin E.K.: Quantum version of the method of inverse scattering problem. J. Math. Sci. 19, 1547–1596 (1982)CrossRefGoogle Scholar
- 78.Slavnov N.A.: Non-equal time current correlation function in a one-dimensional Bose gas. Theor. Math. Phys. 82, 273–282 (1990)CrossRefMathSciNetGoogle Scholar
- 79.Slavnov N.A.: A nonlinear identity for the scattering phase of integrable models. Theor. Math. Phys. 116, 362–366 (1998)CrossRefMathSciNetGoogle Scholar
- 80.Slavnov N.A.: Integral equations for the correlation functions of the quantum one-dimensional Bose gas. Theor. Math. Phys. 121, 1358–1376 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
- 81.Smirnov F.A.: Form Factors in Completely Intergrable Models of Quantum Field Theory. Advanced Series in Mathematical Physics, vol.~14. World Scientific, Singapore (1992)CrossRefGoogle Scholar
- 82.Smirnov F.A.: The general formula for solitons form factors in sine-Gordon model. J. Phys. A 19, L575 (1986)ADSGoogle Scholar
- 83.Tracy C.A., Vaidya H.: One particle reduced density matrix of impenetrable bosons in one dimension at zero temperature. J. Math. Phys. 20, 2291–2312 (1979)ADSCrossRefGoogle Scholar
- 84.Woynarowich F.: Excitation spectrum of the spin-1/2 Heisenberg chain and conformal invariance. Phys. Rev. Lett. 59, 259–261 (1987)ADSCrossRefGoogle Scholar
- 85.Yang C.N., Yang C.P.: Thermodynamics of a one-dimensional system of bosons with repulsive delta-interactions. J. Math. Phys. 10, 1115–1122 (1969)ADSCrossRefzbMATHGoogle Scholar