Advertisement

Annales Henri Poincaré

, Volume 16, Issue 1, pp 99–112 | Cite as

The Real Spectrum of the Imaginary Cubic Oscillator: An Expository Proof

  • Ilario Giordanelli
  • Gian Michele GrafEmail author
Article

Abstract

We give a partially alternate proof of reality of the spectrum of the imaginary cubic oscillator in quantum mechanics.

Keywords

Riemann Surface Simple Eigenvalue Real Spectrum Polygonal Chain Maximum Modulus Principle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bender C.M.: Making sense of non-hermitian hamiltonians. Rept. Prog. Phys. 70, 947 (2007)ADSCrossRefGoogle Scholar
  2. 2.
    Bender C.M., Boettcher S.: Real spectra in non-hermitian hamiltonians having PT-Symmetry. Phys. Rev. Lett. 80, 5243 (1998)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Caliceti E., Graffi S., Maioli M.: Perturbation theory of odd anharmonic oscillators. Commun. Math. Phys. 75, 51 (1980)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Conway J.B.: Functions of One Complex Variable. Springer, Berlin (1978)CrossRefGoogle Scholar
  5. 5.
    Dorey P., Dunning C., Tateo R.: Spectral equivalences, Bethe ansatz equations, and reality properties in PT-symmetric quantum mechanics. J. Phys. A 34, 5679 (2001)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Grecchi V., Martinez A.: The spectrum of the cubic oscillator. Commun. Math. Phys. 319, 479 (2013)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Henry, R.: Spectral projections of the complex cubic oscillator. Ann. Henri Poincaré Online First. doi: 10.1007/s00023-013-0292-2
  8. 8.
    Hunziker W.: Notes on asymptotic perturbation theory for Schrödinger eigenvalue problems. Helv. Phys. Acta 61, 257 (1988)MathSciNetGoogle Scholar
  9. 9.
    Kato T.: On some Schrödinger operators with a singular complex potential. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 5(4), 105 (1978)zbMATHMathSciNetGoogle Scholar
  10. 10.
    Kato T.: Perturbation Theory for Linear Operators. Springer, Berlin (1980)zbMATHGoogle Scholar
  11. 11.
    Mostafazadeh, A.: A critique of PT-symmetric quantum mechanics. arXiv: quant-ph/0310164
  12. 12.
    Olver F.W.J.: Asymptotics and Special Functions. Academic Press, New York (1974)Google Scholar
  13. 13.
    Reed M., Simon B.: Methods of Modern Mathematical Physics. vol. 4, Analysis of Operators. Academic Press, London (1978)Google Scholar
  14. 14.
    Shin K.C.: On the reality of the eigenvalues for a class of PT-symmetric oscillators. Commun. Math. Phys. 229, 543 (2002)ADSCrossRefzbMATHGoogle Scholar
  15. 15.
    Sibuya Y.: Global Theory of a Second Order Linear Ordinary Differential Equation with a Polynomial Coefficient. North-Holland Publishing Company, Amsterdam (1975)zbMATHGoogle Scholar
  16. 16.
    Siegl P., Krejčiřík D.: On the metric operator for the imaginary cubic oscillator. Phys. Rev. D 86, 121702(R) (2012)ADSCrossRefGoogle Scholar
  17. 17.
    Trinh D.T.: Remarks on PT-pseudo-norm in PT-symmetric quantum mechanics. J. Phys. A 38, 3665 (2005)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Trinh D.T.: On the simpleness of zeros of Stokes multipliers. J. Diff. Equ. 223, 351 (2006)ADSCrossRefzbMATHGoogle Scholar
  19. 19.
    Zinn-Justin J., Jentschura U.D.: Imaginary cubic perturbation: numerical and analytic study. J. Phys. A 43, 425301 (2010)ADSCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  1. 1.Theoretische PhysikETH ZurichZurichSwitzerland

Personalised recommendations