Annales Henri Poincaré

, Volume 16, Issue 1, pp 289–345 | Cite as

Quantitative Mode Stability for the Wave Equation on the Kerr Spacetime

  • Yakov Shlapentokh-RothmanEmail author


We give a quantitative refinement and simple proofs of mode stability type statements for the wave equation on Kerr backgrounds in the full sub-extremal range (|a| <  M). As an application, we are able to quantitatively control the energy flux along the horizon and null infinity and establish integrated local energy decay for solutions to the wave equation in any bounded-frequency regime.


Black Hole Wave Equation Half Plane Quasinormal Mode Mode Stability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Alinhac S.: Geometric Analysis of Hyperbolic Differential Equations: An Introduction. Cambridge University Press, Cambridge (2010)CrossRefGoogle Scholar
  2. 2.
    Andersson, L., Blue, P.: Hidden symmetries and decay for the wave equation on the Kerr spacetime (2009). arXiv:0908.2265 (math.AP)Google Scholar
  3. 3.
    Aretakis S.: Decay of axisymmetric solutions of the wave equation on extreme Kerr backgrounds. J. Func. Anal. 263(9), 2770–2831 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Bachelot A., Motet-Bachelot A.: Les résonances d’un trou noir de Schwarzschild. Ann. Inst. H. Poincaré Phys. Théor. 59, 3–68 (1993)zbMATHMathSciNetGoogle Scholar
  5. 5.
    Sá Barreto A., Zworski M.: Distribution of resonances for spherical black holes. Math. Res. Lett. 4, 103–121 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Blue P., Sterbenz J.: Uniform decay of local energy and the semi-linear wave equation on Schwarzschild space. Comm. Math. Phys. 268(2), 481–504 (2006)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Carter B.: Hamilton–Jacobi and Schrodinger separable solutions of Einstein’s equations. Comm. Math. Phys. 10, 280–310 (1968)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Copson, E.: Asymptotic Expansions. Cambridge University Press, Cambridge (1965). [reprinted (2004)]Google Scholar
  9. 9.
    Dafermos M., Rodnianski I.: A proof of the uniform boundedness of solutions to the wave equation on slowly rotating Kerr backgrounds. Inventiones Math. 185(3), 467–559 (2011)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Dafermos, M., Rodnianski, I.: Decay for solutions of the wave equation on Kerr exterior spacetimes I–II: The cases |a| ≪ M or axisymmetry (2010). arXiv:1010.5132 (gr-qc)Google Scholar
  11. 11.
    Dafermos, M., Rodnianski, I.: Lectures on black holes and linear waves. Institut Mittag-Leffler Report no. 14, 2008/2009 (2008). arXiv:0811.0354Google Scholar
  12. 12.
    Dafermos, M., Rodnianski, I.: The black hole stability problem for linear scalar perturbations. In: Proceedings of the 12 Marcel Grossmann Meeting (2010). arXiv:1010.5137 (gr-qc)Google Scholar
  13. 13.
    Dafermos M., Rodnianski I.: The redshift effect and radiation decay on black hole spacetimes. Comm. Pure Appl. Math. 52, 859–919 (2009)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Dyatlov S.: Asymptotic distribution of quasi-normal modes for Kerr–de Sitter black holes. Ann. Henri Poincaré 13, 1101–1166 (2012)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Dyatlov S.: Exponential energy decay for Kerr–de Sitter black holes beyond event horizons. Math. Res. Lett. 18, 1023–1035 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Dyatlov S.: Quasi-normal modes and exponential energy decay for the Kerr–de Sitter black hole. Comm. Math. Phys. 306, 119–163 (2011)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Erdélyi, A.: Office of Naval Research Technical Report on Asymptotic Expansions. 1955, reprinted by Dover (1956)Google Scholar
  18. 18.
    Finster F., Kamran N., Smoller J., Yau S.-T.: Decay of solutions of the wave equation in the Kerr geometry. Comm. Math. Phys. 264(2), 465–503 (2006)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Finster F., Kamran N., Smoller J., Yau S.-T.: Erratum: Decay of solutions of the wave equation in the Kerr geometry. Comm. Math. Phys. 280(2), 563–573 (2008)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Gannot, O.: Quasinormal modes for AdS-Schwarzschild black holes: exponential convergence to the real axis (2012). arXiv:1212.1907 (math.SP)Google Scholar
  21. 21.
    Hartle J., Wilkins D.C.: Analytic properties of the Teukolsky equation. Comm. Math. Phy. 38(1), 47–63 (1974)ADSCrossRefMathSciNetGoogle Scholar
  22. 22.
    Holzegel, G., Smulevici, J.: Decay properties of Klein–Gordon fields on Kerr-AdS spacetimes. Comm. Pure and App. Math. (2013). arXiv:1110.8794 (gr-qc)Google Scholar
  23. 23.
    Kay B., Wald R.: Linear stability of Schwarzschild under perturbations which are nonvanishing on the bifurcation 2-sphere. Class. Quantum Gravity 4(4), 893–898 (1987)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Kokkotas, K., Schmidt, B.: Quasi-normal modes of stars and black holes. Living Rev. Relat. 2 (1999)Google Scholar
  25. 25.
    Luk J.: A vector field method approach to improved decay for solutions to the wave equation on a slowly rotating Kerr black hole. Anal. PDE 5(3), 553–623 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Melrose, R., Sá Barreto, A., and Vasy, A.: Asymptotics of solutions of the wave equation on de Sitter–Schwarzschild space. Comm. PDE (2008, to appear). arXiv:0811.2229 (math.AP)Google Scholar
  27. 27.
    Metcalfe J., Tataru D., Tohaneuanu M.: Price’s law on non-stationary spacetimes. Adv. Math. 230(3), 995–1028 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Olver, F.: Asymptotics and Special Functions. A. K. Peters, New York (1997)Google Scholar
  29. 29.
    Reed M., Simon B.: Methods of Modern Mathematical Physics IV: Analysis of Operators. Academic Press, San Diego (1978)zbMATHGoogle Scholar
  30. 30.
    Press W., Teukolsky S.: Perturbations of a rotating black hole. II. Dynamical stability of the Kerr metric. Astrophys. J. 185, 649–673 (1973)ADSCrossRefMathSciNetGoogle Scholar
  31. 31.
    Tataru, D., Tohaneanu, M.: Local energy estimates on Kerr black hole backgrounds. IMRN 2, 248–292 (2011)Google Scholar
  32. 32.
    Tohaneanu M.: Strichartz estimates on Kerr black hole backgrounds. Trans. AMS 364(2), 689–702 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  33. 33.
    Vasy, A.: Microlocal analysis of asymptotically hyperbolic and Kerr–de Sitter spaces (with an appendix by Semyon Dyatlov). Invent. Math. (2010). arXiv:1012.4391 (math.AP)Google Scholar
  34. 34.
    Walker M., Penrose R.: On quadratic first integrals of the geodesic equations for type 22 spacetimes. Comm. Math. Phys. 18, 265–274 (1970)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  35. 35.
    Warnick, C.: On quasinormal modes of asymptotically Anti-De Sitter Black Holes (2013). arXiv:1306.5760 (gr-qc)Google Scholar
  36. 36.
    Whiting B.: Mode stability of the Kerr black hole. J. Math. Phys. 30(6), 1301–1305 (1989)ADSCrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  1. 1.Department of MathematicsMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations