Advertisement

Annales Henri Poincaré

, Volume 16, Issue 1, pp 113–161 | Cite as

Non-Equilibrium Steady States in Conformal Field Theory

  • Denis BernardEmail author
  • Benjamin Doyon
Article

Abstract

We present a construction of non-equilibrium steady states in one-dimensional quantum critical systems carrying energy and charge fluxes. This construction is based on a scattering approach within a real-time hamiltonian reservoir formulation. Using conformal field theory techniques, we prove convergence towards steady states at large time. We discuss in which circumstances these states describe the universal non-equilibrium regime at low temperatures. We compute the exact large deviation functions for both energy and charge transfers, which encode for the quantum and statistical fluctuations of these transfers at large time. They are universal, depending only on fundamental constants (\({\hbar, k_B}\)), on the central charge and on the external parameters such as the temperatures or the chemical potentials, and they satisfy fluctuation relations. A key point consists in relating the derivatives of these functions to the linear response functions but at complex shifted external parameters.

Keywords

Vertex Operator Topological Defect Vertex Operator Algebra Gibbs State Partial Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Aschbacher W.H., Barbaroux J.-M.: Out of equilibrium correlations in the XY chain. Lett. Math. Phys. 77, 11–20 (2006)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Aschbacher W.H., Pillet C.-A.: Non-equilibrium steady states of the XY chain. J. Stat. Phys. 112, 1153 (2003)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Avron J.E., Bachmann S., Graf G.M., Klich I.: Fredholm determinants and the statistics of charge transport. Commun. Math. Phys. 280, 807–829 (2008)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Bernard D., Doyon B.: Energy flow in non-equilibrium conformal field theory. J. Phys. A 45, 362001 (2012)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Bernard D., Doyon B.: Full counting statistics in the resonant-level model. J. Math. Phys. 53, 122302 (2012)ADSCrossRefMathSciNetGoogle Scholar
  6. 6.
    Bernard D., Doyon B.: Time-reversal symmetry and fluctuation relations in non-equilibrium quantum steady states. J. Phys. A46, 372001 (2013)MathSciNetGoogle Scholar
  7. 7.
    Bonetto, F., Lebowitz, J.L., Rey-Bellet, L.: Fourier’s Law: a challenge for theorists. In: Mathematical physics 2000, pp. 128–150. Imp. Coll. Press, London (2000). arXiv:math-ph/0002052Google Scholar
  8. 8.
    Calabrese P., Cardy J.: Time-dependence of correlation functions following a quantum quench. Phys. Rev. Lett. 96, 136801 (2006)ADSCrossRefGoogle Scholar
  9. 9.
    Calabrese, P., Cardy, J.: Quantum quenches in extended systems. J. Stat. Mech. P06008 (2007)Google Scholar
  10. 10.
    Calabrese P., Essler F.H.L., Fagotti M.: Quantum quench in the transverse field Ising chain. Phys. Rev. Lett. 106, 227203 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    Caldeira A.O., Leggett A.J.: Influence of dissipation on quantum tunneling in macroscopic systems. Phys. Rev. Lett. 46, 211 (1981)ADSCrossRefGoogle Scholar
  12. 12.
    Cardy J.: Conformal invariance and surface critical behavior. Nucl. Phys. B240(FS12), 514–532 (1984)ADSCrossRefGoogle Scholar
  13. 13.
    Cardy J.: The ubiquitous ‘c’: from the Stefan–Boltzmann law to quantum information. J. Stat. Mech. 1010, P10004 (2010)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Castela H., Zotos X., Prelovsek P.: Integrability and ideal conductance at finite temperatures. Phys. Rev. Lett. 74, 972 (1995)ADSCrossRefGoogle Scholar
  15. 15.
    Castro-Alvaredo, O., Chen, Y., Doyon, D., Hoogeveen, M.: Thermodynamic Bethe ansatz for non-equilibrium steady states: exact energy current and fluctuations in integrable QFT. arXiv:1310.4779Google Scholar
  16. 16.
    De Luca A., Viti J., Bernard D., Doyon B.: Non-equilibrium thermal transport in the quantum Ising chain. Phys. Rev. B 88, 134301 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    Davies E.B.: Markovian master equations. Commun. Math. Phys 39, 91–110 (1974)ADSCrossRefzbMATHGoogle Scholar
  18. 18.
    Doyon, B., Hoogeveen, M., Bernard, D.: Energy flow and fluctuations in non-equilibrium conformal field theory on star graphs. arXiv:1306.3192Google Scholar
  19. 19.
    Doyon, B.: Non-equilibrium density matrix for thermal transport in quantum field theory. arXiv:1212.1077Google Scholar
  20. 20.
    Esposito M., Harbola U., Mukamel S.: Non-equilibrium fluctuations, fluctuation theorems and counting statistics in quantum systems. Rev. Mod. Phys. 81, 1665–1702 (2009)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Frenkel I., Lepowsky J., Meurman A.: Vertex operator algebras and the monster. Academic Press, Boston (1989)Google Scholar
  22. 22.
    Gallavotti G., Cohen E.: Dynamical ensembles in non-equilibrium statistical mechanics. Phys. Rev. Lett. 74, 2694 (1995)ADSCrossRefGoogle Scholar
  23. 23.
    Giamarchi T., Millis A.J.: Conductivity of a Luttinger liquid. Phys. Rev. B46, 9325 (1922)ADSGoogle Scholar
  24. 24.
    Gogolin A.O., Konik R.M., Ludwig A.W.W., Saleur H.: Counting statistics for the Anderson impurity model: Bethe ansatz and Fermi liquid study. Ann. Phys. (Leipzig) 16, 678 (2007)ADSCrossRefzbMATHGoogle Scholar
  25. 25.
    Gutman D.B., Gefen Yu., Mirlin A.D.: Full counting statistics of Luttinger liquid conductor. Phys. Rev. Lett. 105, 256802 (2010)ADSCrossRefGoogle Scholar
  26. 26.
    Kac V.G., Wakimoto M.: Modular and conformal invariance constraints in representation theory of affine Lie algebras. Adv. Math. 70, 156 (1988)CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    Karevski D., Popkov V., Schütz G.M.: Exact matrix product solution for the boundary-driven Lindblad XXZ-chain. Phys. Rev. Lett. 110, 047201 (2013)ADSCrossRefGoogle Scholar
  28. 28.
    Karrasch, C., Ilan, R., Moore, J.E.: Non-equilibrium thermal transport and its relation to linear response. arXiv:1211.2236Google Scholar
  29. 29.
    Klich, I.: Full counting statistics: an elementary derivation of Levitov’s formula. arXiv:cond-mat/0209642Google Scholar
  30. 30.
    Komnik A., Saleur H.: Full counting statistics of chiral Luttinger liquids with impurities. Phys. Rev. Lett. 96, 216406 (2006)ADSCrossRefGoogle Scholar
  31. 31.
    Lebowitz J., Spohn H.: Irreversible themodynamics for quantum systems weakly coupled to thermal reservoirs. Adv. Chem. Phys. 39, 109–142 (1978)Google Scholar
  32. 32.
    Levitov L.S., Lesovik G.B.: Charge distribution in quantum shot noise. JETP Lett. 58, 230–235 (1993)ADSGoogle Scholar
  33. 33.
    Levitov, L.S., Lesovik, G.B.: Quantum measurement in electric circuit. arXiv:cond-mat/9401004Google Scholar
  34. 34.
    Lindblad G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119–130 (1976)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  35. 35.
    Mason, G., Tuite, M.P.: Vertex operators and modular forms. In: Kirsten, K., Williams, F. (eds.) A Window into zeta and modular physics, vol. 57, pp. 183–278. MSRI Publications, C.U.P., Cambridge (2010)Google Scholar
  36. 36.
    Mintchev M., Sorba P.: Luttinger liquid in non-equilibrium steady state. J. Phys. A Math. Theor. 46, 095006 (2013)ADSCrossRefMathSciNetGoogle Scholar
  37. 37.
    Petkova V.B., Zuber J.-B.: Generalised twisted partition functions. Phys. Lett. B504, 533 (2001)MathSciNetGoogle Scholar
  38. 38.
    Prosen T.: Open XXZ spin chain: non-equilibrium steady state and a strict bound on ballistic transport. Phys. Rev. Lett. 106, 217206 (2011)ADSCrossRefGoogle Scholar
  39. 39.
    Prosen T.: Exact non-equilibrium Steady state of a strongly driven open XXZ chain. Phys. Rev. Lett. 107, 137201 (2011)ADSCrossRefGoogle Scholar
  40. 40.
    Ruelle D.: Natural non-equilibrium states in quantum statistical mechanics. J. Stat. Phys. 98, 57 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  41. 41.
    Saito K., Dhar A.: Fluctuation theorem in quantum heat conduction. Phys. Rev. Lett. 99, 180601 (2007)ADSCrossRefGoogle Scholar
  42. 42.
    Schonhamer K.: Full counting statistics for non-interacting fermions: exact results and the Levitov–Lesovik formula. Phys. Rev. B75, 2053229 (2007)Google Scholar
  43. 43.
    Sirker J., Pereira R.G., Affleck I.: Diffusion and ballistic transport in one dimensional quantum systems. Phys. Rev. Lett. 103, 216602 (2009)ADSCrossRefGoogle Scholar
  44. 44.
    Spohn H., Lebowitz J.L.: Stationary non-equilibrium states of infinite harmonic systems. Commun. Math. Phys. 54, 97 (1977)ADSCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  1. 1.Laboratoire de Physique Théorique, UMR-8549 of CNRSÉcole Normale SupérieureParisFrance
  2. 2.Department of MathematicsKing’s College LondonLondonUK

Personalised recommendations