Annales Henri Poincaré

, Volume 16, Issue 1, pp 189–203 | Cite as

Reflection Positivity for Majoranas

Article

Abstract

We establish reflection positivity for Gibbs trace states defined by certain Hamiltonians that describe the interaction of Majoranas on a lattice. These Hamiltonians may include many-body interactions, as long as the signs of the associated coupling constants satisfy certain restrictions. We show that reflection positivity holds on an even sub-algebra of Majoranas.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chesi S., Jaffe A., Loss D., Pedrocchi F.L.: Vortex loops and Majoranas. J. Math. Phys. 54, 112203 (2013). doi:10.1063/1.4829273 ADSCrossRefMathSciNetGoogle Scholar
  2. 2.
    Dyson F.J., Lieb E.H., Simon B.: Phase transitions in quantum spin systems with isotropic and nonisotropic interactions. J. Stat. Phys. 18, 335–383 (1978)ADSCrossRefMathSciNetGoogle Scholar
  3. 3.
    Fröhlich J.: Schwinger functions and their generating functionals. I. Helv. Phys. Acta. 47, 265–306 (1974)MATHGoogle Scholar
  4. 4.
    Fröhlich J., Simon B., Thomas S.: Infrared bounds, phase transitions, and continuous symmetry breaking. Commun. Math. Phys. 50, 79–85 (1976)ADSCrossRefGoogle Scholar
  5. 5.
    Fröhlich J., Lieb E.H.: Phase transitions in anisotropic lattice spin systems. Commun. Math. Phys. 60, 233–267 (1978)ADSCrossRefGoogle Scholar
  6. 6.
    Fröhlich J., Israel R., Lieb E.H., Simon B.: Phase transitions and reflection positivity. I. General theory and long range lattice models. Commun. Math. Phys. 62, 1–34 (1978)ADSCrossRefGoogle Scholar
  7. 7.
    Fröhlich J., Israel R., Lieb E.H., Simon B.: Phase transitions and reflection positivity. II. Short range lattice models and coulomb systems. J. Stat. Phys. 22, 297–347 (1980)ADSCrossRefGoogle Scholar
  8. 8.
    Glimm J., Jaffe A.: Quantum Physics, 2nd edn. Springer, New York (1987)CrossRefGoogle Scholar
  9. 9.
    Glimm J., Jaffe A., Spencer T.: Phase transitions for \({\phi^{4}_{2}}\) quantum fields. Commun. Math. Phys. 45, 203–216 (1975)ADSCrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Guerra, F., Rosen, L., Simon, B.: The P(ϕ)2 Euclidean quantum field theory as classical statistical mechanics I and II. Ann. Math. 101, 111–189; 191–259 (1975)Google Scholar
  11. 11.
    Jaffe, A., Pedrocchi, F.L.: Topological order and reflection positivity. http://arxiv.org/abs/1310.5370
  12. 12.
    Kitaev A.: Anyons in an exactly solved model and beyond. Ann. Phys. 321, 2–111 (2006)ADSCrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Lieb Elliott H.: Flux phase of the half-filled band. Phys. Rev. Lett. 73, 2158–2161 (1994)ADSCrossRefGoogle Scholar
  14. 14.
    Macris N., Nachtergaele B.: On the flux phase conjecture at half-filling: an improved proof. J. Stat. Phys. 85, 745–761 (1996)ADSCrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Osterwalder K., Schrader R.: Axioms for Euclidean Green’s functions. I and II. Commun. Math. Phys. 31, 83–112 (1973)ADSCrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Osterwalder K., Schrader R.: Axioms for Euclidean Green’s functions. Commun. Math. Phys. 42, 281–305 (1975)ADSCrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Osterwalder K., Seiler E.: Gauge field theories on a lattice. Ann. Phys. 110, 440–471 (1978)ADSCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  1. 1.Harvard UniversityCambridgeUSA
  2. 2.Department of PhysicsUniversity of BaselBaselSwitzerland
  3. 3.Institute for Theoretical PhysicsETH ZürichZürichSwitzerland

Personalised recommendations