Annales Henri Poincaré

, Volume 15, Issue 12, pp 2379–2408 | Cite as

Absence of Positive Eigenvalues for Hard-Core N-Body Systems

  • Kenichi Ito
  • Erik SkibstedEmail author


We show absence of positive eigenvalues for generalized N-body hard-core Schrödinger operators under the condition of bounded obstacles with connected exterior. A particular example is atoms and molecules with the assumption of infinite mass and finite extent nuclei.


Positive Eigenvalue Dirichlet Form Unique Continuation Positive Threshold Asymptotic Completeness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Antognini A. et al.: Proton structure from the measurement of 2S-2P transition frequencies of muonic hydrogen. Science. 339(6118), 417–420 (2013)CrossRefADSGoogle Scholar
  2. 2.
    Amrein W., Boutetde Monvel A., Georgescu V.: C 0-groups, commutator methods and spectral theory of N-body Hamiltonians. Basel/Boston/Berlin, Birkhäuser (1996)CrossRefGoogle Scholar
  3. 3.
    Boutet de Monvel A., Georgescu V., Soffer A.: N-body Hamiltonians with hard-core interactions. Rev. Math. Phys. 6(4), 515–596 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Boutet de Monvel A., Manda D., Purice R.: The commutator method for form-relatively compact perturbations. Lett. Math. Phys. 22, 211–223 (1991)MathSciNetCrossRefzbMATHADSGoogle Scholar
  5. 5.
    Chavel, I.: Riemannian geometry. A modern introduction. In: Cambridge Studies in Advanced Mathematics, vol. 98. 2nd edn. Cambridge University Press, Cambridge (2006)Google Scholar
  6. 6.
    Dereziński J.: Asymptotic completeness for N-particle long-range quantum systems. Ann. Math. 38, 427–476 (1993)CrossRefGoogle Scholar
  7. 7.
    Dereziński, J., Gérard, C.: Scattering theory of classical and quantum N-particle systems. In: Texts and Monographs in Physics. Springer, Berlin (1997)Google Scholar
  8. 8.
    Froese, R., Herbst, I.: Exponential bounds and absence of positive eigenvalues for N-body Schrödinger operators. Commun. Math. Phys. 87(3), 429–447 (1982/83)Google Scholar
  9. 9.
    Froese R., Herbst I., Hoffmann-Ostenhof M., Hoffmann-Ostenhof T.: On the absence of positive eigenvalues for one-body Schrödinger operators. J. d’Anal. Math. 41, 272–284 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Georgescu V.: On the unique continuation property for Schrödinger Hamiltonians. Helvetica Physica Acta. 52, 655–670 (1979)MathSciNetGoogle Scholar
  11. 11.
    Georgescu V., Gérard C., Møller J.S.: Commutators, C 0–semigroups and resolvent estimates. J. Funct. Anal. 216, 303–361 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Graf G.M.: Asymptotic completeness for N-body short-range quantum systems: a new proof. Commun. Math. Phys. 132, 73–101 (1990)MathSciNetCrossRefzbMATHADSGoogle Scholar
  13. 13.
    Griesemer M.: N-body quantum systems with singular potentials. Ann. Inst. Henri Poincaré. 69(2), 135–187 (1998)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Hörmander, L.: The analysis of linear partial differential operators. II–IV. Springer, Berlin (1983–85)Google Scholar
  15. 15.
    Ito K., Skibsted E.: Scattering theory for Riemannian Laplacians. J. Funct. Anal. 264, 1929–1974 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Ito K., Skibsted E.: Absence of embedded eigenvalues for Riemannian Laplacians. Adv. Math. 248, 945–962 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Ito, K., Skibsted, E.: Absence of positive eigenvalues for hard-core N-body systems. In: XVIIth International Congress on Mathematical Physics, World Scientific, pp. 520–527 (2013)Google Scholar
  18. 18.
    Jerison, D., Kenig, C.E.: Unique continuation and absence of positive eigenvalues for Schrödinger operators. Ann. Math. (2) 121(3), 463–494 (1985). With an appendix by E. M. SteinGoogle Scholar
  19. 19.
    Perry P.: Exponential bounds and semifiniteness of point spectrum for N-body Schrödinger operators. Commun. Math. Phys. 92, 481–483 (1984)MathSciNetCrossRefzbMATHADSGoogle Scholar
  20. 20.
    Reed, M., Simon, B.: Methods of modern mathematical physics I–IV. Academic Press, New York (1972–78)Google Scholar
  21. 21.
    Rodnianski, I., Tao, T.: Effective limiting absorption principles, and applications. Preprint (2011)Google Scholar
  22. 22.
    Skibsted E.: Propagation estimates for N-body Schrödinger operators. Commun. Math. Phys. 142, 67–98 (1991)MathSciNetCrossRefzbMATHADSGoogle Scholar
  23. 23.
    Skibsted E.: Spectral analysis of N-body systems coupled to a bosonic field. Rev. Math. Phys. 10, 989–1026 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Wolff T.: Recent work on sharp estimates in second-order elliptic unique continuation problems. J. Geom. Anal. 3(6), 621–650 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Yafaev D.: Radiation conditions and scattering theory for N-particle Hamiltonians. Commun. Math. Phys. 154(3), 523–554 (1993)MathSciNetCrossRefzbMATHADSGoogle Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  1. 1.Graduate School of Pure and Applied SciencesUniversity of TsukubaTsukuba, IbarakiJapan
  2. 2.Institut for Matematiske, Fag, Aarhus UniversitetAarhus CDenmark

Personalised recommendations