Annales Henri Poincaré

, Volume 15, Issue 9, pp 1801–1865 | Cite as

Itsy Bitsy Topological Field Theory

  • Daniel V. MathewsEmail author


We construct an elementary, combinatorial kind of topological quantum field theory (TQFT), based on curves, surfaces, and orientations. The construction derives from contact invariants in sutured Floer homology and is essentially an elaboration of a TQFT defined by Honda–Kazez–Matić. This topological field theory stores information in binary format on a surface and has “digital” creation and annihilation operators, giving a toy-model embodiment of “it from bit”.


Boundary Component Contact Structure Boundary Edge Internal Vertex Euler Class 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baez, J., Stay, M.: Physics topology, logic and computation: a Rosetta Stone. In: New Structures for Physics. Lecture Notes in Physics, vol. 813, pp. 95–172. Springer, Berlin (2011)Google Scholar
  2. 2.
    Bennequin, D.: Entrelacements et équations de Pfaff. Third Schnepfenried geometry conference, vol. 1 (Schnepfenried, 1982). Astérisque, vol. 107, pp. 87–161. Soc. Math. France, Paris (1983)Google Scholar
  3. 3.
    Eliashberg Y.: Contact 3-manifolds twenty years since J. Martinet’s Work. Ann. Inst. Fourier (Grenoble) 42(1–2), 165–192 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Finkelstein D.: Space-time code. Phys. Rev. (2) 184, 1261–1271 (1969)CrossRefzbMATHMathSciNetADSGoogle Scholar
  5. 5.
    Freedman, M.H., Kitaev, A., Larsen, M.J., Wang, Z.: Topological quantum computation. Bull. Am. Math. Soc. (N.S.) 40(1), 31–38 (2003) (electronic). Mathematical challenges of the 21st century (Los Angeles, CA, 2000)Google Scholar
  6. 6.
    Frenkel I.B., Khovanov Mikhail G.: Canonical bases in tensor products and graphical calculus for \({U_q(\mathfrak{sl}_2)}\). Duke Math. J. 87(3), 409–480 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Giroux E.: Convexité en topologie de contact. Comment. Math. Helv. 66(4), 637–677 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Golovko, R.: The Embedded Contact Homology of Sutured Solid Tori I. (2009).
  9. 9.
    Golovko, R.: The Cylindrical Contact Homology of Universally Tight Sutured Contact Solid Tori. (2010).
  10. 10.
    Honda, K.: On the classification of tight contact structures. I. Geom. Topol. 4, 309–368 (2000) (electronic)Google Scholar
  11. 11.
    Honda, K., Kazez, W.H., Matić, G.: Contact Structures, Sutured Floer Homology and TQFT. (2008).
  12. 12.
    Honda K., Kazez W.H., Matić G.: On the contact class in Heegaard Floer homology. J. Differ. Geom. 83(2), 289–311 (2009)zbMATHGoogle Scholar
  13. 13.
    Juhász, A.: Holomorphic discs and sutured manifolds. Algebr. Geom. Topol. 6, 1429–1457 (2006) (electronic)Google Scholar
  14. 14.
    Juhász András: Floer homology and surface decompositions. Geom. Topol. 12(1), 299–350 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Kauffman, L.H., Lins, S.L.: Temperley–Lieb recoupling theory and invariants of 3-manifolds. In: Annals of Mathematics Studies, vol. 134. Princeton University Press, Princeton (1994)Google Scholar
  16. 16.
    Kock, J.: Frobenius algebras and 2D topological quantum field theories. In: London Mathematical Society Student Texts, vol. 59. Cambridge University Press, Cambridge (2004)Google Scholar
  17. 17.
    Major Seth A.: A spin network primer. Am. J. Phys. 67(11), 972–980 (1999)CrossRefzbMATHADSGoogle Scholar
  18. 18.
    Massot, P.: Infinitely Many Universally Tight Torsion Free Contact Structures with Vanishing OzsvÁTh–SZabÓ Contact Invariants. (2009).
  19. 19.
    Mathews, D.: Chord Diagrams, Contact-Topological Quantum Field Theory, and Contact Categories. Ph.D. thesis, Stanford University (2009).
  20. 20.
    Mathews D.: Chord diagrams, contact-topological quantum field theory, and contact categories. Algebraic Geom. Topol. 10(4), 2091–2189 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Mathews, D.: Sutured Floer Homology, Sutured TQFT and Non-Commutative QFT. (2010).
  22. 22.
    Nakamoto A.: Diagonal transformations in quadrangulations of surfaces. J. Graph Theory 21(3), 289–299 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Nakamoto A., Suzuki Y.: Diagonal slides and rotations in quadrangulations on the sphere. Yokohama Math. J. 55(2), 105–112 (2010)zbMATHMathSciNetGoogle Scholar
  24. 24.
    Negami S., Nakamoto A.: Diagonal transformations of graphs on closed surfaces. Sci. Rep. Yokohama Nat. Univ. Sect. I Math. Phys. Chem. 40, 71–97 (1993)MathSciNetGoogle Scholar
  25. 25.
    Ozsváth, P., Szabó, Z.: Heegaard Floer homology and contact structures. Duke Math. J. 129(1), 39–61 (2005)Google Scholar
  26. 26.
    Penner R.C.: The decorated Teichmüller space of punctured surfaces. Comm. Math. Phys. 113(2), 299–339 (1987)CrossRefzbMATHMathSciNetADSGoogle Scholar
  27. 27.
    Penrose, R.: Angular momenum: an approach to combinatorial space-time. In: Quantum Theory and Beyond. Cambridge University Press, Cambridge (1971)Google Scholar
  28. 28.
    Wendl, C.: A hierarchy of local symplectic filling obstructions for contact 3-manifolds. (2010).
  29. 29.
    Wheeler, J.A.: Information, physics, quantum: the search for links. In: Foundations of Quantum Mechanics in the Light of New Technology (Tokyo, 1989), pp. 354–368. Phys. Soc. Japan, Tokyo (1990)Google Scholar
  30. 30.
    Witten E.: Topological quantum field theory. Comm. Math. Phys. 117(3), 353–386 (1988)CrossRefzbMATHMathSciNetADSGoogle Scholar
  31. 31.
    Zarev, R.: Bordered Floer Homology for Sutured Manifolds. (2009).
  32. 32.
    Zarev, R.: Joining and Gluing Sutured Floer Homology. (2010).

Copyright information

© Springer Basel 2013

Authors and Affiliations

  1. 1.School of Mathematical SciencesMonash UniversityVictoriaAustralia

Personalised recommendations