Annales Henri Poincaré

, Volume 15, Issue 6, pp 1109–1121 | Cite as

Absence of Absolutely Continuous Spectrum for the Kirchhoff Laplacian on Radial Trees

  • Pavel Exner
  • Christian Seifert
  • Peter Stollmann


In this paper, we prove that the existence of absolutely continuous spectrum of the Kirchhoff Laplacian on a radial metric tree graph together with a finite complexity of the geometry of the tree implies that the tree is in fact eventually periodic. This complements the results by Breuer and Frank in (Rev Math Phys 21(7):929–945, 2009) in the discrete case as well as for sparse trees in the metric case.


Continuous Spectrum Tree Graph Quantum Graph Atomic Measure Radial Tree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berkolaiko, G., Kuchment, P.: Introduction to Quantum Graphs. Providence, RI, American Mathematical Society (2013)Google Scholar
  2. 2.
    Bessaga, C., Pelczynski, A.: Selected topics in infinite-dimensional topology. Mathematical Monographs, vol. 58. Polish Scientific, Warsaw (1975)Google Scholar
  3. 3.
    Breuer J., Frank R.: Singular spectrum for radial trees. Rev. Math. Phys. 21(7), 929–945 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Carmona R., Lacroix J.: Spectral Theory of Random Schrödinger Operators. Birkhäuser, Boston (1990)CrossRefzbMATHGoogle Scholar
  5. 5.
    Exner P., Lipovský J.: On the absence of absolutely continuous spectra for Schrödinger operators on radial tree graphs. J. Math. Phys. 51, 122107 (2010)ADSCrossRefMathSciNetGoogle Scholar
  6. 6.
    Klassert S., Lenz D., Stollmann P.: Delone measures of finite local complexity and applications to spectral theory of one-dimensional continuum models of quasicrystals. Discret. Cont. Dyn. Syst. 29(4), 1553–1571 (2011)zbMATHMathSciNetGoogle Scholar
  7. 7.
    Naimark K., Solomyak M.: Eigenvalue estimates for the weighted Laplacian on metric trees. Proc. Lond. Math. Soc. 80(3), 690–724 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Pankrashkin K.: Unitary dimension reduction for a class of self-adjoint extensions with applications to graph-like structures. J. Math. Anal. Appl. 396, 640–655 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Remling C.: The absolutely continuous spectrum of one-dimensional Schrödinger operators. Math. Phys. Anal. Geom. 10, 359–373 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Remling C.: The absolutely continuous spectrum of Jacobi matrices. Ann. Math. 174, 125–171 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Seifert, C.: Measure-perturbed one-dimensional Schrödinger operators—a continuum model for quasicrystals. Dissertation thesis, Chemnitz University of Technology (2012). URL:
  12. 12.
    Sobolev A.V., Solomyak M.: Schrödinger operators on homogeneous metric trees: spectrum in gaps. Rev. Math. Phys. 14, 421–468 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Solomyak M.: On the spectrum of the Laplacian on regular metric trees. Waves Random Media 14, 155–171 (2004)ADSCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  • Pavel Exner
    • 1
    • 2
  • Christian Seifert
    • 3
  • Peter Stollmann
    • 4
  1. 1.Doppler Institute for Mathematical Physics and Applied Mathematics, Faculty of Nuclear Sciences and Physical EngineeringCzech Technical UniversityPragueCzech Republic
  2. 2.Nuclear Physics Institute ASCRŘež near PragueCzech Republic
  3. 3.Institut für MathematikTechnische Universität Hamburg-HarburgHamburgGermany
  4. 4.Fakultät für MathematikTechnische Universität ChemnitzChemnitzGermany

Personalised recommendations