Advertisement

Annales Henri Poincaré

, Volume 15, Issue 6, pp 1123–1144 | Cite as

Continuum Schrödinger Operators Associated With Aperiodic Subshifts

  • David Damanik
  • Jake Fillman
  • Anton Gorodetski
Article

Abstract

We study Schrödinger operators on the real line whose potentials are generated by an underlying ergodic subshift over a finite alphabet and a rule that replaces symbols by compactly supported potential pieces. We first develop the standard theory that shows that the spectrum and the spectral type are almost surely constant and that identifies the almost sure absolutely continuous spectrum with the essential closure of the set of energies with vanishing Lyapunov exponent. Using results of Damanik–Lenz and Klassert–Lenz–Stollmann, we also show that the spectrum is a Cantor set of zero Lebesgue measure if the subshift satisfies the Boshernitzan condition and the potentials are aperiodic and irreducible. We then study the case of the Fibonacci subshift in detail and prove results for the local Hausdorff dimension of the spectrum at a given energy in terms of the value of the associated Fricke–Vogt invariant. These results are elucidated for some simple choices of the local potential pieces, such as piecewise constant ones and local point interactions. In the latter special case, our results explain the occurrence of so-called pseudo bands, which have been pointed out in the physics literature.

Keywords

Lyapunov Exponent Ergodic Measure Unique Ergodicity Operator Associate Mathieu Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Avila A.: On the spectrum and Lyapunov exponent of limit periodic Schrödinger operators. Commun. Math. Phys. 288, 907–918 (2009)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Avila A., Krikorian R.: Reducibility or nonuniform hyperbolicity for quasiperiodic Schrödinger cocycles. Ann. Math. 164, 911–940 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Baake M., Joseph D., Kramer P.: Periodic clustering in the spectrum of quasiperiodic Kronig–Penney models. Phys. Lett. A 168, 199–208 (1992)ADSCrossRefMathSciNetGoogle Scholar
  4. 4.
    Baake M., Roberts J.: Trace maps as 3D reversible dynamical systems with an invariant. J. Stat. Phys. 74(3–4), 829–888 (1994)ADSzbMATHMathSciNetGoogle Scholar
  5. 5.
    Bellissard J., Formoso A., Lima R., Testard D.: Quasiperiodic interaction with a metal-insulator transition. Phys. Rev. B 26, 3024–3030 (1982)ADSCrossRefGoogle Scholar
  6. 6.
    Boshernitzan M.: A unique ergodicity of minimal symbolic flows with linear block growth. J. Anal. Math. 44, 77–96 (1984)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Boshernitzan M.: A condition for unique ergodicity of minimal symbolic flows. Ergod. Theory Dyn. Syst. 12, 425–428 (1992)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Bovier A., Ghez J.-M.: Remarks on the spectral properties of tight-binding and Kronig–Penney models with substitution sequences. J. Phys. A 28, 2313–2324 (1995)ADSzbMATHMathSciNetGoogle Scholar
  9. 9.
    Cantat S.: Bers and Hénon, Painlevé and Schrödinger. Duke Math. J. 149, 411–460 (2009)zbMATHMathSciNetGoogle Scholar
  10. 10.
    Carmona R., Lacroix J.: Spectral Theory of Random Schrödinger Operators. Birkhäuser, Boston (1990)zbMATHGoogle Scholar
  11. 11.
    Cycon, H., Froese, R., Kirsch, W., Simon, B.: Schrödinger Operators with Applications to Quantum Mechanics and Global Geometry, Texts and Monographs in Physics. Springer, Berlin (1987)Google Scholar
  12. 12.
    Damanik, D.: Gordon-type arguments in the spectral theory of one-dimensional quasicrystals. In: Directions in Mathematical Quasicrystals, CRM Monogr. Ser., vol. 13, pp. 277–305. American Mathematical Society, Providence (2000)Google Scholar
  13. 13.
    Damanik, D.: Strictly ergodic subshifts and associated operators. In: Spectral Theory and Mathematical Physics: A Festschrift in Honor of Barry Simon’s 60th Birthday. Proc. Sympos. Pure Math., vol. 76, Part 2, pp. 505–538. American Mathematical Society, Providence (2007)Google Scholar
  14. 14.
    Damanik, D., Embree, M., Gorodetski, A.: Spectral properties of Schrödinger operators arising in the study of quasicrystals (2013, preprint) (arXiv:1210.5753)Google Scholar
  15. 15.
    Damanik D., Embree M., Gorodetski A., Tcheremchantsev S.: The fractal dimension of the spectrum of the Fibonacci Hamiltonian. Commun. Math. Phys. 280, 499–516 (2008)ADSzbMATHMathSciNetGoogle Scholar
  16. 16.
    Damanik D., Gorodetski A.: Hyperbolicity of the trace map for the weakly coupled Fibonacci Hamiltonian. Nonlinearity 22, 123–143 (2009)ADSzbMATHMathSciNetGoogle Scholar
  17. 17.
    Damanik D., Gorodetski A.: Spectral and quantum dynamical properties of the weakly coupled Fibonacci Hamiltonian. Commun. Math. Phys. 305, 221–277 (2011)ADSzbMATHMathSciNetGoogle Scholar
  18. 18.
    Damanik D., Gorodetski A.: The density of states measure of the weakly coupled Fibonacci Hamiltonian. Geom. Funct. Anal. 22, 976–989 (2012)zbMATHMathSciNetGoogle Scholar
  19. 19.
    Damanik, D., Gorodetski, A.: Hölder continuity of the integrated density of states for the Fibonacci Hamiltonian. Commun. Math. Phys. (2013, to appear)Google Scholar
  20. 20.
    Damanik D., Lenz D.: A condition of Boshernitzan and uniform convergence in the multiplicative ergodic theorem. Duke Math. J. 133, 95–123 (2006)zbMATHMathSciNetGoogle Scholar
  21. 21.
    Damanik D., Lenz D.: Zero-measure Cantor spectrum for Schrödinger operators with low-complexity potentials. J. Math. Pures Appl. 85, 671–686 (2006)zbMATHMathSciNetGoogle Scholar
  22. 22.
    Damanik D., Lenz D.: Uniform Szegő cocycles over strictly ergodic subshifts. J. Approx. Theory 144, 133–138 (2007)zbMATHMathSciNetGoogle Scholar
  23. 23.
    Damanik, D., Munger, P., Yessen, W.: Orthogonal polynomials on the unit circle with Fibonacci Verblunsky coefficients, I. The essential support of the measure. J. Approx. Theory (2013, to appear)Google Scholar
  24. 24.
    Damanik D., Stolz G.: A generalization of Gordon’s theorem and applications to quasiperiodic Schrödinger operators. Electron. J. Differ. Equ. 55, 8 (2000)MathSciNetGoogle Scholar
  25. 25.
    Ghosh P.: The Kronig–Penney model on a generalized Fibonacci lattice. Phys. Lett. A 161, 153–157 (1991)ADSGoogle Scholar
  26. 26.
    Gordon A.: On the point spectrum of the one-dimensional Schrödinger operator. Usp. Math. Nauk. 31, 257–258 (1976)zbMATHGoogle Scholar
  27. 27.
    Holzer M.: Three classes of one-dimensional, two-tile Penrose tilings and the Fibonacci Kronig–Penney model as a generic case. Phys. Rev. B 38, 1709–1720 (1988)ADSMathSciNetGoogle Scholar
  28. 28.
    Kirsch W.: On a class of random Schrödinger operators. Adv. Appl. Math. 6, 177–187 (1985)zbMATHMathSciNetGoogle Scholar
  29. 29.
    Kaminaga M., Nakano F.: Spectral properties of quasiperiodic Kronig–Penney model. Tsukuba J. Math. 26, 205–228 (2002)zbMATHMathSciNetGoogle Scholar
  30. 30.
    Kirsch W., Martinelli F.: On the ergodic properties of the spectrum of general random operators. J. Reine Angew. Math. 334, 141–156 (1982)zbMATHMathSciNetGoogle Scholar
  31. 31.
    Klassert S., Lenz D., Stollmann P.: Delone measures of finite local complexity and applications to spectral theory of one-dimensional continuum models of quasicrystals. Discrete Contin. Dyn. Syst. 29, 1553–1571 (2011)zbMATHMathSciNetGoogle Scholar
  32. 32.
    Kohmoto M., Kadanoff L.P., Tang C.: Localization problem in one dimension: mapping and escape. Phys. Rev. Lett. 50, 1870–1872 (1983)ADSMathSciNetGoogle Scholar
  33. 33.
    Kollar J., Sütő A.: The Kronig–Penney model on a Fibonacci lattice. Phys. Lett. A 117, 203–209 (1986)ADSGoogle Scholar
  34. 34.
    Kotani S.: Jacobi matrices with random potentials taking finitely many values. Rev. Math. Phys. 1, 129–133 (1989)zbMATHMathSciNetGoogle Scholar
  35. 35.
    Last Y.: Zero measure spectrum for the almost Mathieu operator. Commun. Math. Phys. 164, 421–432 (1994)ADSzbMATHMathSciNetGoogle Scholar
  36. 36.
    Munger, P., Ong, D.: The Hölder continuity of spectral measures of an extended CMV matrix. (2013, preprint) (arXiv:1301.0501)Google Scholar
  37. 37.
    Roberts J.: Escaping orbits in trace maps. Phys. A 228, 295–325 (1996)MathSciNetGoogle Scholar
  38. 38.
    Simon B.: Almost periodic Schrödinger operators: a review. Adv. Appl. Math. 3, 463–490 (1982)zbMATHGoogle Scholar
  39. 39.
    Simon, B.: Orthogonal Polynomials on the Unit Circle. Part 2. Spectral Theory. Colloquium Publications, vol. 54. American Mathematical Society, Providence (2005)Google Scholar
  40. 40.
    Sütő A.: The spectrum of a quasiperiodic Schrödinger operator. Commun. Math. Phys. 111, 409–415 (1987)ADSGoogle Scholar
  41. 41.
    Sütő A.: Singular continuous spectrum on a Cantor set of zero Lebesgue measure for the Fibonacci Hamiltonian. J. Stat. Phys. 56, 525–531 (1989)ADSGoogle Scholar
  42. 42.
    Thomas U., Kramer P.: The Fibonacci quasicrystal reconsidered: variety of energy spectra for continuous Schrödinger equations with simple potentials. Int. J. Modern Phys. B 3, 1205–1235 (1989)ADSMathSciNetGoogle Scholar
  43. 43.
    Würtz D., Soerensen M., Schneider T.: Quasiperiodic Kronig–Penney model on a Fibonacci superlattice. Helv. Phys. Acta 61, 345–362 (1988)MathSciNetGoogle Scholar
  44. 44.
    Yessen W.: Spectral analysis of tridiagonal Fibonacci Hamiltonians. J. Spectr. Theory 3, 101–128 (2013)zbMATHMathSciNetGoogle Scholar
  45. 45.
    Yoccoz, J.-C.: Some questions and remarks about SL(2,\({\mathbb{R}}\)) cocycles. Modern Dynamical Systems and Applications, pp. 447–458. Cambridge University Press, Cambridge (2004)Google Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  1. 1.Department of MathematicsRice UniversityHoustonUSA
  2. 2.Department of MathematicsUniversity of CaliforniaIrvineUSA

Personalised recommendations