Annales Henri Poincaré

, Volume 15, Issue 4, pp 645–678 | Cite as

Towards an Operator-Algebraic Construction of Integrable Global Gauge Theories

Article

Abstract

The recent construction of integrable quantum field theories on two-dimensional Minkowski space by operator-algebraic methods is extended to models with a richer particle spectrum, including finitely many massive particle species transforming under a global gauge group. Starting from a two-particle S-matrix satisfying the usual requirements (unitarity, Yang–Baxter equation, Poincaré and gauge invariance, crossing symmetry, . . .), a pair of relatively wedge-local quantum fields is constructed which determines the field net of the model. Although the verification of the modular nuclearity condition as a criterion for the existence of local fields is not carried out in this paper, arguments are presented that suggest it holds in typical examples such as non-linear O(N)   σ-models. It is also shown that for all models complying with this condition, the presented construction solves the inverse scattering problem by recovering the S-matrix from the model via Haag–Ruelle scattering theory, and a proof of asymptotic completeness is given.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abdalla E., Abdalla C., Rothe K.: Non-Perturbative Methods in 2-Dimensional Quantum Field Theory. World Scientific, Brazil (1991)CrossRefGoogle Scholar
  2. 2.
    Arinshtein A.E., Fateev V.A., Zamolodchikov A.B.: Quantum S-matrix of the (1+1)-dimensional toda chain. Phys. Lett. B87, 389–392 (1979)CrossRefADSGoogle Scholar
  3. 3.
    Alazzawi, S.: Deformations of fermionic quantum field theories and integrable models. Lett. Math. Phys. 103(1), 37–58. http://arxiv.org/abs/1203.2058v1 (2013)
  4. 4.
    Alazzawi, S.: Work in progressGoogle Scholar
  5. 5.
    Araki H.: Mathematical theory of quantum fields. In: International Series of Monographs on Physics. Oxford University Press, Oxford (1999)Google Scholar
  6. 6.
    Borchers, H., Buchholz, D., Schroer, B.: Polarization-free generators and the S-matrix. Commun. Math. Phys. 219, 125–140. http://arxiv.org/abs/hep-th/0003243 (2001)
  7. 7.
    Bostelmann, H., Cadamuro, D.: An operator expansion for integrable quantum field theories. J. Phys. A Math. Theor. 46, 095401. http://arxiv.org/abs/1208.4763 (2013)
  8. 8.
    Buchholz D., D’Antoni C., Longo R.: Nuclear maps and modular structures. I. General properties. J. Funct. Anal. 88, 233–250 (1990)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Buchholz, D., Fredenhagen, K.: Locality and the structure of particle states. Commun. Math. Phys. 84, 1. http://projecteuclid.org/euclid.cmp/1103921044 (1982)
  10. 10.
    Babujian, H.M., Foerster, A., Karowski, M.: The form factor program: a review and new results—the nested SU(N) off-shell bethe ansatz. SIGMA 2, 082. http://arxiv.org/abs/hep-th/0609130 (2006)
  11. 11.
    Babujian, H.M., Foerster, A., Karowski, M.: SU(N) and O(N) off-shell nested Bethe ansatz and form factors. http://users.physik.fu-berlin.de/~kamecke/p/p97.pdf (preprint, 2012)
  12. 12.
    Bischoff, M.: Construction of models in low-dimensional quantum field theory using operator algebraic methods. PhD thesis, University of Rome Tor Vergata, Rome (2012)Google Scholar
  13. 13.
    Berg B., Karowski M., WeiszP.: Construction of Green’s functions from an exact S-matrix. Phys. Rev. D 19, 2477–2479 (1979)CrossRefADSGoogle Scholar
  14. 14.
    Buchholz, D., Lechner, G.: Modular nuclearity and localization. Annales Henri Poincaré 5, 1065–1080. http://arxiv.org/abs/math-ph/0402072 (2004)
  15. 15.
    Bostelmann, H., Lechner, G., Morsella, G.: Scaling limits of integrable quantum field theories. Rev. Math. Phys. 23, 1115–1156. http://arxiv.org/abs/1105.2781 (2011)Google Scholar
  16. 16.
    Borchers, H.: The CPT theorem in two-dimensional theories of local observables. Commun. Math. Phys. 143, 315–332. http://projecteuclid.org/euclid.cmp/1104248958 (1992)
  17. 17.
    Bostelmann, H.: Phase space properties and the short distance structure in quantum field theory. J. Math. Phys. 46, 052301. http://arxiv.org/abs/math-ph/0409070 (2005)
  18. 18.
    Braden, H., Sasaki, R.: The S-matrix coupling dependence for a, d and e affine Toda field theory. Phy. Lett. B 255, 343–352. http://www.sciencedirect.com/science/article/pii/037026939190777N (1991)
  19. 19.
    Bisognano J.J., Wichmann E.H.: On the duality condition for quantum fields. J. Math. Phys. 17, 303–321 (1976)CrossRefMathSciNetADSGoogle Scholar
  20. 20.
    Buchholz, D., Wichmann, E.H.: Causal independence and the energy level density of states in local quantum field theory. Commun. Math. Phys. 106, 321. http://projecteuclid.org/euclid.cmp/1104115703 (1986)
  21. 21.
    Doplicher, S., Haag, R., Roberts, J.E.: Fields, observables and gauge transformations. I. Commun. Math. Phys. 13, 1–23. http://projecteuclid.org/euclid.cmp/1103841481 (1969)
  22. 22.
    Doplicher, S., Haag, R., Roberts, J.E.: Local observables and particle statistics. I. Commun. Math. Phys. 23, 199–230. http://projecteuclid.org/euclid.cmp/1103857630 (1971)
  23. 23.
    Doplicher, S., Haag, R., Roberts, J.E.: Local observables and particle statistics. II. Commun. Math. Phys. 35, 49–85. http://projecteuclid.org/euclid.cmp/1103859518 (1974)
  24. 24.
    Doplicher S., Longo R.: Standard and split inclusions of von Neumann algebras. Invent. Math. 75, 493–536 (1984)CrossRefMATHMathSciNetADSGoogle Scholar
  25. 25.
    Dorey, P.: Exact S-matrices. http://arxiv.org/abs/hep-th/9810026 (preprint, 1998)
  26. 26.
    Dybalski, W.: Haag–ruelle scattering theory in presence of massless particles. Lett. Math. Phys. 72, 27–38. http://arxiv.org/abs/hep-th/0412226 (2005)Google Scholar
  27. 27.
    Faddeev, L.D.: Quantum completely integrable models in field theory. In: Novikov, S.P. (ed.) Mathematical Physics Reviews, vol. 1, pp. 107–155 (1984)Google Scholar
  28. 28.
    Fröhlich J.: Quantized “Sine–Gordon” equation with a non-vanishing mass term in two space-time dimensions. Phys. Rev. Lett. 34, 833–836 (1975)CrossRefMathSciNetADSGoogle Scholar
  29. 29.
    Glimm, J., Jaffe, A.: Quantum Physics. A Functional Integral Point of View, 2nd edn., p. 535. Springer, New York (1987)Google Scholar
  30. 30.
    Guido, D., Longo, R.: An algebraic spin and statistics theorem. Commun. Math. Phys. 172, 517. http://projecteuclid.org/euclid.cmp/1104274313 (1995)
  31. 31.
    Haag R.: Local Quantum Physics—Fields, Particles, Algebras, 2nd edn. Springer, Berlin (1996)Google Scholar
  32. 32.
    Hepp, K.: On the connection between Wightman and LSZ quantum field theory. Commun. Math. Phys. 1, 95–111. http://projecteuclid.org/euclid.cmp/1103758732 (1965)
  33. 33.
    Jimbo, M.: Quantum R matrix for the generalized toda system. Commun. Math. Phys. 102, 537–547. http://projecteuclid.org/euclid.cmp/1104114539 (1986)
  34. 34.
    Ketov S.V.: Quantum Non-Linear Sigma-Models. Springer, Berlin (2000)CrossRefGoogle Scholar
  35. 35.
    Lechner, G.: Polarization-free quantum fields and interaction. Lett. Math. Phys. 64, 137–154. http://arxiv.org/abs/hep-th/0303062 (2003)
  36. 36.
    Lechner, G.: On the existence of local observables in theories with a factorizing S-matrix. J. Phys. A38, 3045–3056. http://arxiv.org/abs/math-ph/0405062 (2005)
  37. 37.
    Lechner, G.: On the construction of quantum field theories with factorizing S-matrices. Ph.D. thesis, University of Göttingen, Göttingen. http://arxiv.org/abs/math-ph/0611050 (2006)
  38. 38.
    Lechner, G.: Construction of quantum field theories with factorizing S-matrices. Commun. Math. Phys. 277, 821–860. http://arxiv.org/abs/math-ph/0601022 (2008)
  39. 39.
    Lechner, G.: Deformations of quantum field theories and integrable models. Commun. Math. Phys. 312, 265–302. http://arxiv.org/abs/1104.1948 (2012)
  40. 40.
    Liguori, A., Mintchev, M.: Fock representations of quantum fields with generalized statistics. Commun. Math. Phys. 169, 635–652. http://arxiv.org/abs/hep-th/9403039 (1995)Google Scholar
  41. 41.
    Liguori A., Mintchev M.: Fock spaces with generalized statistics. Lett. Math. Phys. 33, 283–295 (1995)CrossRefMATHMathSciNetADSGoogle Scholar
  42. 42.
    Müger, M.: Superselection structure of massive quantum field theories in 1+1 dimensions. Rev. Math. Phys. 10, 1147–1170. http://arxiv.org/abs/hep-th/9705019 (1998)Google Scholar
  43. 43.
    Mund, J.: The Bisognano–Wichmann theorem for massive theories. Annales Henri Poincaré 2, 907–926. http://arxiv.org/abs/hep-th/0101227 (2001)
  44. 44.
    Mund, J.: An algebraic Jost-Schroer theorem for massive theories. Commun. Math. Phys. 315, 445–464. http://arxiv.org/abs/1012.1454 (2012)
  45. 45.
    Mussardo G.: Off critical statistical models: factorized scattering theories and bootstrap program. Phys. Rep. 218, 215–379 (1992)CrossRefMathSciNetADSGoogle Scholar
  46. 46.
    Niedermaier, M.R.: A derivation of the cyclic form factor equation. Commun. Math. Phys. 196, 411–428. http://arxiv.org/abs/hep-th/9706172 (1998)Google Scholar
  47. 47.
    Niedermaier M.R.: Form factors, thermal states and modular structures. Nucl. Phys. B 519, 517–550 (1998)CrossRefMATHMathSciNetADSGoogle Scholar
  48. 48.
    Reed M., Simon B.: Methods of Modern Mathematical Physics II—Fourier Analysis. Academic Press, New York (1975)MATHGoogle Scholar
  49. 49.
    Schroer, B.: Modular wedge localization and the d=1+1 formfactor program. Ann. Phys. 275, 190–223. http://arxiv.org/abs/hep-th/9712124 (1999)Google Scholar
  50. 50.
    Schroer, B.: A critical look at 50 years particle theory from the perspective of the crossing property. Found. Phys. 40, 1800–1857. http://arxiv.org/pdf/0905.4006v5 (2010)Google Scholar
  51. 51.
    Schützenhofer, C.: Multi-particle S-matrix models in 1 + 1-dimensions and associated QFTs. Master’s thesis, Vienna (2011)Google Scholar
  52. 52.
    Seiler, E.: The case against asymptotic freedom. http://arxiv.org/abs/hep-th/0312015 (2003)
  53. 53.
    Smirnov F.A.: Form Factors in Completely Integrable Models of Quantum Field Theory. World Scientific, Singapore (1992)CrossRefMATHGoogle Scholar
  54. 54.
    Streater R.F., Wightman A.: PCT, Spin and Statistics, and All That. Benjamin-Cummings, Reading (1964)MATHGoogle Scholar
  55. 55.
    Shankar R., Witten E.: The S-matrix of the supersymmetric nonlinear sigma model. Phys. Rev. D17, 2134 (1978)ADSGoogle Scholar
  56. 56.
    Schroer, B., Wiesbrock, H.: Modular constructions of quantum field theories with interactions. Rev. Math. Phys. 12, 301–326. http://arxiv.org/abs/hep-th/9812251 (2000)Google Scholar
  57. 57.
    Takesaki M.: Theory of Operator Algebras II. Springer, Berlin (2003)CrossRefMATHGoogle Scholar
  58. 58.
    Zamolodchikov A., Zamolodchikov A.: Relativistic factorized S-matrix in two dimensions having O(N) isotopic symmetry. Nucl. Phy. B 133, 525–535 (1978)CrossRefMathSciNetADSGoogle Scholar
  59. 59.
    Zamolodchikov A.B., Zamolodchikov A.B.: Factorized S-matrices in two dimensions as the exact solutions of certain relativistic quantum field models. Ann. Phys. 120, 253–291 (1979)CrossRefMathSciNetADSGoogle Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  1. 1.Department of PhysicsVienna UniversityViennaAustria
  2. 2.Institute for Theoretical PhysicsLeipzig UniversityLeipzigGermany

Personalised recommendations