Annales Henri Poincaré

, Volume 15, Issue 4, pp 679–705 | Cite as

Conformal Operators on Weighted Forms; Their Decomposition and Null Space on Einstein Manifolds

  • A. Rod Gover
  • Josef Šilhan


There is a class of Laplacian like conformally invariant differential operators on differential forms \({L^\ell_k}\) which may be considered as the generalisation to differential forms of the conformally invariant powers of the Laplacian known as the Paneitz and GJMS operators. On conformally Einstein manifolds we give explicit formulae for these as factored polynomials in second-order differential operators. In the case that the manifold is not Ricci flat we use this to provide a direct sum decomposition of the null space of the \({L^\ell_k}\) in terms of the null spaces of mutually commuting second-order factors.


Null Space Einstein Manifold Conformal Class Conformal Geometry Conformal Scale 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aubry E., Guillarmou C.E.: Conformal harmonic forms, Branson-Gover operators and Dirichlet problem at infinity. J. Eur. Math. Soc. (JEMS) 13, 911–957 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Bailey T.N., Eastwood M.G., Gover A.R.: Thomas’s structure bundle for conformal, projective and related structures. Rocky Mt. J. Math. 24, 1191–1217 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Branson T.: Differential operators canonically associated to a conformal structure. Math. Scand. 57, 293–345 (1985)zbMATHMathSciNetGoogle Scholar
  4. 4.
    Branson T.: Group representations arising from Lorentz conformal geometry. J. Funct. Anal. 74, 199–291 (1987)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Branson T.: Sharp inequalities, the functional determinant, and the complementary series. Trans Am. Math. Soc. 347, 3671–3742 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Branson T., Gover A.R.: Conformally invariant operators, differential forms, cohomology and a generalisation of Q-curvature. Comm. Partial Differ. Equ. 30, 1611–1669 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Branson T., Ørsted B.: Explicit functional determinants in four dimensions. Proc Am. Math. Soc. 113, 671–684 (1991)CrossRefGoogle Scholar
  8. 8.
    Canzani, Y., Gover, A.R., Jakobson, D., Ponge, R.: Conformal invariants from nodal sets. Int. Math. Res. Notices (2013). doi: 10.1093/imrn/rns295 arXiv:1208.3040
  9. 9.
    Čap A., Gover A.R.: Tractor calculi for parabolic geometries. Trans Am. Math. Soc. 354, 1511–1548 (2002)CrossRefzbMATHGoogle Scholar
  10. 10.
    Chang S.-Y.A., Yang P.: Extremal metrics of zeta function determinants on 4-manifolds. Annals of Math. 142, 171–212 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Dirac P.A.M.: Wave equations in conformal space. Ann. Math. 37, 429–442 (1936)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Djadli Z., Malchiodi A.: Existence of conformal metrics with constant Q-curvature. Ann. Math. 2(168), 813–858 (2008)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Graham C.R., Witten E.: Conformal anomaly of submanifold observables in AdS/CFT correspondence. Nuclear Phys. B 546, 52–64 (1999)CrossRefzbMATHMathSciNetADSGoogle Scholar
  14. 14.
    Čap, A., Gover, A.R.: Tractor bundles for irreducible parabolic geometries. In: Global analysis and harmonic analysis (Marseille-Luminy, 1999) pp. 129–154. Sémin. Congr., vol. 4. Soc. Math. France, Paris (2000)Google Scholar
  15. 15.
    Čap A., Gover A.R.: Standard tractors and the conformal ambient metric construction. Ann. Global Anal. Geom. 24(3), 231–259 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Deser S., Nepomechie R.I.: Anomalous propagation of gauge fields in conformally flat spaces. Phys. Lett. B 132, 321 (1983)CrossRefMathSciNetADSGoogle Scholar
  17. 17.
    Eastwood M.G., Slovák J.: Semiholonomic Verma modules. J. Algebra 197, 424–448 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Eelbode D., Souček V.: Conformally invariant powers of the Dirac operator in Clifford analysis. Math. Methods Appl. Sci. 33, 1558–1570 (2010)zbMATHMathSciNetGoogle Scholar
  19. 19.
    Fefferman, C., Graham, C.R.: The ambient metric. In: Annals of Mathematics Studies, vol. 178. Princeton University Press, Princeton (2012)Google Scholar
  20. 20.
    Fefferman C., Hirachi K.: Ambient metric construction of Q-curvature in conformal and CR geometries. Math. Res. Lett. 10, 819–831 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Gover, A.R.: The 18th Winter School “Geometry and Physics” (Srní 1998) Rend. Circ. Mat. Palermo 59, Suppl.No. (2) 25–47 (1999)Google Scholar
  22. 22.
    Gover A.R.: Invariant theory and calculus for conformal geometries. Adv. Math. 163, 206–257 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Gover A.R.: Laplacian operators and Q-curvature on conformally Einstein manifolds. Mathematische Annalen 336, 311–334 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Gover A.R., Graham C.R.: CR invariant powers of the sub-Laplacian. J. Reine Angew. Math. 583, 1–27 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Gover, A.R., Latini, E., Waldron, A.: Boundary calculus for conformally compact manifolds. arXiv:1104.2991Google Scholar
  26. 26.
    Gover A.R., Nurowski P.: Obstructions to conformally Einstein metrics in n dimensions. J. Geom. Phys. 56, 450–484 (2006)CrossRefzbMATHMathSciNetADSGoogle Scholar
  27. 27.
    Gover A.R., Peterson L.J.: Conformally invariant powers of the Laplacian, Q-curvature, and tractor calculus. Commun. Math. Phys. 235, 339–378 (2003)CrossRefzbMATHMathSciNetADSGoogle Scholar
  28. 28.
    Gover A.R., Peterson L.J.: The ambient obstruction tensor and the conformal deformation complex. Pacific J. Math. 226, 309–351 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    Gover A.R., Šilhan J.: The conformal Killing equation on forms—prolongations and applications. Differ. Geom. Appl. 26, 244–266 (2008)CrossRefzbMATHGoogle Scholar
  30. 30.
    Gover A.R., Šilhan J.: Commuting linear operators and decompositions; applications to Einstein manifolds. Acta Appl. Math. 109, 555–589 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    Gover A.R., Šilhan J.: Conformal operators on forms and detour complexes on Einstein manifolds. Comm. Math. Phys. 284, 291–316 (2008)CrossRefzbMATHMathSciNetADSGoogle Scholar
  32. 32.
    Graham, C.R.: Talk at the workshop. Conformal structure in geometry, analysis, and physics. AIM, Palo Alto, Aug. 12–16 (2003)Google Scholar
  33. 33.
    Graham C.R., Jenne R., Mason L.J., Sparling G.A.: Conformally invariant powers of the Laplacian, I: Existence. J. Lond. Math. Soc. 46, 557–565 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  34. 34.
    Graham C.R., Juhl A.: Holographic formula for Q-curvature. Adv. Math. 216, 841–853 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  35. 35.
    Graham C.R., Zworski M.: Scattering matrix in conformal geometry. Invent. Math. 152, 89–118 (2003)CrossRefzbMATHMathSciNetADSGoogle Scholar
  36. 36.
    Liu H., Ryan J.: Clifford analysis techniques for spherical PDE. J. Fourier Anal. Appl. 8, 535–563 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  37. 37.
    Juhl, A.: Families of conformally covariant differential operators, Q-curvature and holography. In: Progress in Mathematics, vol. 275. Birkhäuser, Basel (2009)Google Scholar
  38. 38.
    Mason L.J., Nicolas J.-P.: Conformal scattering and the Goursat problem. J. Hyperbolic Differ. Equ. 1, 197–233 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  39. 39.
    Paneitz, S.M.: A quartic conformally covariant differential operator for arbitrary pseudo-Riemannian manifolds. SIGMA Symmetry Integrability Geom. Methods Appl, vol. 4 (2008), Paper 036Google Scholar
  40. 40.
    Schoen R.M.: Conformal deformation of a Riemannian metric to constant scalar curvature. J. Differ. Geom. 20, 479–495 (1984)zbMATHMathSciNetGoogle Scholar
  41. 41.
    Šilhan, J.: Invariant differential operators in conformal geometry. PhD thesis, The University of Auckland (2006)Google Scholar
  42. 42.
    Veblen O.: A conformal wave equation. Proc. Nat. Acad. Sci. USA 21, 484–487 (1935)CrossRefzbMATHADSGoogle Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  1. 1.Department of MathematicsThe University of AucklandAucklandNew Zealand
  2. 2.Mathematical Sciences InstituteAustralian National UniversityCanberraAustralia
  3. 3.Institute of Mathematics and StatisticsMasaryk UniversityBrnoCzech Republic

Personalised recommendations