Annales Henri Poincaré

, Volume 14, Issue 7, pp 1747–1773 | Cite as

Convexity of Reduced Energy and Mass Angular Momentum Inequalities

Article

Abstract

In this paper, we extend the work in Chruściel and Costa (Class. Quant. Grav. 26:235013, 2009), Chruściel et al. (Ann. Phy. 323:2591–2613, 2008), Costa (J. Math. Theor. 43:285202, 2010), Dain (J. Diff. Geom. 79:33–67, 2008). We weaken the asymptotic conditions on the second fundamental form, and we also give an L6−norm bound for the difference between general data and Extreme Kerr data or Extreme Kerr–Newman data by proving convexity of the renormalized Dirichlet energy when the target has non-positive curvature. In particular, we give the first proof of the strict mass/angular momentum/charge inequality for axisymmetric Einstein/Maxwell data which is not identical with the extreme Kerr–Newman solution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brill D.: On the positive definite mass of the Bondi-Weber-Wheeler time- symmetric gravitational waves. Ann. Phys. 7, 466–483 (1959)MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    Chruściel P.T.: Mass and Angular-Momentum Inequalities for Axi-Symmetric Initial Data Sets. I. Positivity of Mass. Ann. Phys. 323, 2566–2590 (2008)ADSCrossRefMATHGoogle Scholar
  3. 3.
    Chruściel P.T., Costa J.L.: Mass, angular-momentum and charge inequalities for axisymmetric initial data. Class. Quant. Grav. 26, 235013 (2009)ADSCrossRefGoogle Scholar
  4. 4.
    Chruściel P.T., Li Y., Weinstein G.: Mass and angular-momentum inequalities for axi-symmetric initial data sets. II. angular momentum. Ann. Phys. 323, 2591–2613 (2008)ADSCrossRefMATHGoogle Scholar
  5. 5.
    Chruściel P.T., Nguyen L.: A uniqueness theorem for degenerate Kerr-Newman black holes. Ann. Henri Poincaré 11, 585–609 (2010)ADSCrossRefMATHGoogle Scholar
  6. 6.
    Costa J.L.: Proof of a Dain inequality with charge. J. Phys. A: Math. Theor. 43, 285202 (2010)CrossRefGoogle Scholar
  7. 7.
    Dain S.: Proof of the angular momentum-mass inequality for axisymmetric black hole. J. Differential Geom. 79, 33–67 (2008)MathSciNetMATHGoogle Scholar
  8. 8.
    Dain S.: A variational principle for stationary, axisymmetric solutions of Einstein’s equations. Class. Quant. Grav. 23, 6857–6871 (2006)MathSciNetADSCrossRefMATHGoogle Scholar
  9. 9.
    Evans L.: Partial Differential Equations. Graduate Studies in Mathematics, vol. 19. American Mathematical Society, Providence (1998)Google Scholar
  10. 10.
    Schoen, R.: Analytic Aspect of Harmonic Maps. In: ChernSeminar, S.S. (ed.) on Nonlinear PDE, MSRI Publication, pp. 321–358, Springer-Verlag, New York (1984)Google Scholar
  11. 11.
    Weinstein G.: N-black hole stationary and axially symmetric solutions of the Einstein/Maxwell equations. Commun. Part. Diff. Eqs. 21, 1389–1430 (1996)CrossRefMATHGoogle Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  1. 1.Department of MathematicsStanford UniversityStanfordUSA

Personalised recommendations