Advertisement

Annales Henri Poincaré

, Volume 15, Issue 1, pp 61–141 | Cite as

Spectral Networks and Snakes

  • Davide Gaiotto
  • Gregory W. Moore
  • Andrew NeitzkeEmail author
Article

Abstract

We apply and illustrate the techniques of spectral networks in a large collection of A K-1 theories of class S, which we call “lifted A 1 theories.” Our construction makes contact with Fock and Goncharov’s work on higher Teichmüller theory. In particular, we show that the Darboux coordinates on moduli spaces of flat connections which come from certain special spectral networks coincide with the Fock–Goncharov coordinates. We show, moreover, how these techniques can be used to study the BPS spectra of lifted A 1 theories. In particular, we determine the spectrum generators for all the lifts of a simple superconformal field theory.

Keywords

Modulus Space Branch Point Coulomb Branch Hitchin System Spectral Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gaiotto, D., Moore, G.W., Neitzke, A.: Spectral networks. http://www.arXiv.org/abs/1204.4824
  2. 2.
    Fock, V., Goncharov, A.B.: Moduli spaces of local systems and higher Teichmüller theory. Publ. Math. Inst. Hautes Études Sci. 103, 1–211 (2006). http://www.arXiv.org/abs/math/0311149
  3. 3.
    Argyres, P.C., Ronen Plesser, M., Seiberg, N., Witten, E.: New \({\mathcal{N}=2}\) Superconformal field theories in four dimensions. Nucl. Phys. B 461, 71–84 (1996). http://www.arXiv.org/abs/hep-th/9511154
  4. 4.
    Argyres, P.C., Douglas, M.R.: New phenomena in SU(3) supersymmetric gauge theory. Nucl. Phys. B 448, 93–126 (1995). http://www.arXiv.org/abs/hep-th/9505062 Google Scholar
  5. 5.
    Shapere, A.D., Vafa, C.: BPS structure of Argyres-Douglas superconformal theories. http://www.arXiv.org/abs/hep-th/9910182
  6. 6.
    Gaiotto, D., Moore, G.W., Neitzke, A.: Wall-Crossing in Coupled 2d–4d Systems. http://www.arXiv.org/abs/1103.2598
  7. 7.
    Gaiotto, D., Moore, G.W., nd Neitzke, A.: Wall-crossing, Hitchin systems, and the WKB approximation. http://www.arXiv.org/abs/0907.3987
  8. 8.
    Fock, V., Goncharov, A.B.: Cluster X-varieties, amalgamation and Poisson-Lie groups. http://www.arXiv.org/abs/math/0508408
  9. 9.
    Verbitsky, M.: Deformations of trianalytic subvarieties of hyperkähler manifolds. Selecta Math. (N.S.) 3, 447–490 (1998). http://www.arXiv.org/abs/alg-geom/9610010
  10. 10.
    Bielawski R.: Existence of closed geodesics on the moduli space of k-monopoles. Nonlinearity 9(6), 1463–1467 (1996)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Xie, D.: General Argyres–Douglas Theory. http://www.arXiv.org/abs/1204.2270
  12. 12.
    Gaiotto, D., Moore, G.W., Neitzke, A.: Framed BPS states. http://www.arXiv.org/abs/1006.0146
  13. 13.
    Kontsevich, M., Soibelman, Y.: Stability structures, motivic Donaldson–Thomas invariants and cluster transformations. http://www.arXiv.org/abs/0811.2435
  14. 14.
    Gaiotto, D., Moore, G.W., Neitzke, A.: Four-dimensional wall-crossing via three-dimensional field theory. Commun. Math. Phys. 299, 163–224 (2010). http://www.arXiv.org/abs/0807.4723
  15. 15.
    Cecotti, S., Vafa, C.: BPS wall crossing and topological strings. http://www.arXiv.org/abs/0910.2615
  16. 16.
    Dimofte, T., Gukov, S., Soibelman, Y.: Quantum wall crossing in N=2 Gauge theories. http://www.arXiv.org/abs/0912.1346
  17. 17.
    Manschot, J., Pioline, B., Sen, A.: Wall Crossing from Boltzmann Black Hole Halos. JHEP 1107, 059 (2011) http://www.arXiv.org/abs/1011.1258
  18. 18.
    Pioline, B.: Four ways across the wall. J. Phys. Conf. Ser. 346, 012017 (2012) http://www.arXiv.org/abs/1103.0261
  19. 19.
    Caetano, J., Toledo, J.: χ-Systems for correlation functions. http://www.arXiv.org/abs/1208.4548
  20. 20.
    Longhi, P.: The BPS spectrum generator in 2d–4d systems. http://www.arXiv.org/abs/1205.2512
  21. 21.
    Cecotti, S., Neitzke, A., Vafa, C.: R-Twisting and 4d/2d correspondences. http://www.arXiv.org/abs/1006.3435
  22. 22.
    Gaiotto, D., Moore, G.W., Neitzke, A.: Spectral network movies. Viewable at http://www.ma.utexas.edu/users/neitzke/spectral-network-movies/ as of August (2012)
  23. 23.
    Gaiotto, D.: \({{\mathcal N}=2}\) dualities. http://www.arXiv.org/abs/0904.2715
  24. 24.
    Alim, M., Cecotti, S., Cordova, C., Espahbodi, S., Rastogi, A., Vafa, C.: BPS quivers and spectra of complete \({{\mathcal N}=2}\) quantum field theories. http://www.arXiv.org/abs/1109.4941
  25. 25.
    Alim, M., Cecotti, S., Cordova, C., Espahbodi, S., Rastogi, A., Vafa, C.: \({{\mathcal N}=2}\) Quantum field theories and their BPS quivers. http://www.arXiv.org/abs/1112.3984
  26. 26.
    Le, I., Kamnitzer, J.: (2013, to appear)Google Scholar
  27. 27.
    Moore, G.W., Tachikawa, Y.: On 2d TQFTs whose values are holomorphic symplectic varieties. http://www.arXiv.org/abs/1106.5698
  28. 28.
    Gaiotto, D., Moore, G.W., Tachikawa, Y.: On 6d \({\mathcal{N}=(2,0)}\) theory compactified on a Riemann surface with finite area. http://www.arXiv.org/abs/1110.2657
  29. 29.
    Chacaltana, O., Distler, J.: Tinkertoys for Gaiotto Duality. JHEP 1011, 099 (2010) http://www.arXiv.org/abs/1008.5203
  30. 30.
    Chacaltana, O., Distler, J.: Tinkertoys for the D N series. http://www.arXiv.org/abs/1106.5410
  31. 31.
    Chacaltana, O., Distler, J., Tachikawa, Y.: Nilpotent orbits and codimension-two defects of 6d \({\mathcal{N}=(2,0)}\) theories. http://www.arXiv.org/abs/1203.2930
  32. 32.
    Brunner, I., Roggenkamp, D.: Defects and bulk perturbations of boundary Landau–Ginzburg orbifolds. JHEP 04, 001 (2008). http://www.arXiv.org/abs/0712.0188
  33. 33.
    Dimofte, T., Gaiotto, D., van der Veen, R.: RG domain walls and hybrid triangulations. To appearGoogle Scholar
  34. 34.
    Chen, H.-Y., Dorey, N., Petunin, K.: Moduli space and wall-crossing formulae in higher-rank gauge theories. http://www.arXiv.org/abs/1105.4584
  35. 35.
    Fraser, C., Hollowood, T.J.: On the weak coupling spectrum of \({\mathcal{N}=2}\) supersymmetric SU(n) gauge theory. Nucl. Phys. B 490, 217–238 (1997). http://www.arXiv.org/abs/hep-th/9610142 Google Scholar
  36. 36.
    Goncharov, A.B.: Ideal webs and moduli spaces of local systems on surfaces (2013, to appear)Google Scholar
  37. 37.
    Goncharov, A.B., Kontsevich, M.: (2013, to appear)Google Scholar
  38. 38.
    Arkani-Hamed, N., Bourjaily, J., Cachazo, F., Goncharov, A.B., Postnikov, A., Trnka, J.: Scattering amplitudes and the positive Grassmannian (2013, to appear)Google Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  • Davide Gaiotto
    • 1
    • 2
  • Gregory W. Moore
    • 3
  • Andrew Neitzke
    • 4
    Email author
  1. 1.School of Natural SciencesInstitute for Advanced StudyPrincetonUSA
  2. 2.Perimeter Institute for Theoretical PhysicsWaterlooCanada
  3. 3.NHETC and Department of Physics and AstronomyRutgers UniversityPiscatawayUSA
  4. 4.Department of MathematicsUniversity of Texas at AustinAustinUSA

Personalised recommendations