Abstract
We apply and illustrate the techniques of spectral networks in a large collection of A K-1 theories of class S, which we call “lifted A 1 theories.” Our construction makes contact with Fock and Goncharov’s work on higher Teichmüller theory. In particular, we show that the Darboux coordinates on moduli spaces of flat connections which come from certain special spectral networks coincide with the Fock–Goncharov coordinates. We show, moreover, how these techniques can be used to study the BPS spectra of lifted A 1 theories. In particular, we determine the spectrum generators for all the lifts of a simple superconformal field theory.
Keywords
Modulus Space Branch Point Coulomb Branch Hitchin System Spectral Network
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- 1.Gaiotto, D., Moore, G.W., Neitzke, A.: Spectral networks. http://www.arXiv.org/abs/1204.4824
- 2.Fock, V., Goncharov, A.B.: Moduli spaces of local systems and higher Teichmüller theory. Publ. Math. Inst. Hautes Études Sci. 103, 1–211 (2006). http://www.arXiv.org/abs/math/0311149
- 3.Argyres, P.C., Ronen Plesser, M., Seiberg, N., Witten, E.: New \({\mathcal{N}=2}\) Superconformal field theories in four dimensions. Nucl. Phys. B 461, 71–84 (1996). http://www.arXiv.org/abs/hep-th/9511154
- 4.Argyres, P.C., Douglas, M.R.: New phenomena in SU(3) supersymmetric gauge theory. Nucl. Phys. B 448, 93–126 (1995). http://www.arXiv.org/abs/hep-th/9505062 Google Scholar
- 5.Shapere, A.D., Vafa, C.: BPS structure of Argyres-Douglas superconformal theories. http://www.arXiv.org/abs/hep-th/9910182
- 6.Gaiotto, D., Moore, G.W., Neitzke, A.: Wall-Crossing in Coupled 2d–4d Systems. http://www.arXiv.org/abs/1103.2598
- 7.Gaiotto, D., Moore, G.W., nd Neitzke, A.: Wall-crossing, Hitchin systems, and the WKB approximation. http://www.arXiv.org/abs/0907.3987
- 8.Fock, V., Goncharov, A.B.: Cluster X-varieties, amalgamation and Poisson-Lie groups. http://www.arXiv.org/abs/math/0508408
- 9.Verbitsky, M.: Deformations of trianalytic subvarieties of hyperkähler manifolds. Selecta Math. (N.S.) 3, 447–490 (1998). http://www.arXiv.org/abs/alg-geom/9610010
- 10.Bielawski R.: Existence of closed geodesics on the moduli space of k-monopoles. Nonlinearity 9(6), 1463–1467 (1996)ADSCrossRefzbMATHMathSciNetGoogle Scholar
- 11.Xie, D.: General Argyres–Douglas Theory. http://www.arXiv.org/abs/1204.2270
- 12.Gaiotto, D., Moore, G.W., Neitzke, A.: Framed BPS states. http://www.arXiv.org/abs/1006.0146
- 13.Kontsevich, M., Soibelman, Y.: Stability structures, motivic Donaldson–Thomas invariants and cluster transformations. http://www.arXiv.org/abs/0811.2435
- 14.Gaiotto, D., Moore, G.W., Neitzke, A.: Four-dimensional wall-crossing via three-dimensional field theory. Commun. Math. Phys. 299, 163–224 (2010). http://www.arXiv.org/abs/0807.4723
- 15.Cecotti, S., Vafa, C.: BPS wall crossing and topological strings. http://www.arXiv.org/abs/0910.2615
- 16.Dimofte, T., Gukov, S., Soibelman, Y.: Quantum wall crossing in N=2 Gauge theories. http://www.arXiv.org/abs/0912.1346
- 17.Manschot, J., Pioline, B., Sen, A.: Wall Crossing from Boltzmann Black Hole Halos. JHEP 1107, 059 (2011) http://www.arXiv.org/abs/1011.1258
- 18.Pioline, B.: Four ways across the wall. J. Phys. Conf. Ser. 346, 012017 (2012) http://www.arXiv.org/abs/1103.0261
- 19.Caetano, J., Toledo, J.: χ-Systems for correlation functions. http://www.arXiv.org/abs/1208.4548
- 20.Longhi, P.: The BPS spectrum generator in 2d–4d systems. http://www.arXiv.org/abs/1205.2512
- 21.Cecotti, S., Neitzke, A., Vafa, C.: R-Twisting and 4d/2d correspondences. http://www.arXiv.org/abs/1006.3435
- 22.Gaiotto, D., Moore, G.W., Neitzke, A.: Spectral network movies. Viewable at http://www.ma.utexas.edu/users/neitzke/spectral-network-movies/ as of August (2012)
- 23.Gaiotto, D.: \({{\mathcal N}=2}\) dualities. http://www.arXiv.org/abs/0904.2715
- 24.Alim, M., Cecotti, S., Cordova, C., Espahbodi, S., Rastogi, A., Vafa, C.: BPS quivers and spectra of complete \({{\mathcal N}=2}\) quantum field theories. http://www.arXiv.org/abs/1109.4941
- 25.Alim, M., Cecotti, S., Cordova, C., Espahbodi, S., Rastogi, A., Vafa, C.: \({{\mathcal N}=2}\) Quantum field theories and their BPS quivers. http://www.arXiv.org/abs/1112.3984
- 26.Le, I., Kamnitzer, J.: (2013, to appear)Google Scholar
- 27.Moore, G.W., Tachikawa, Y.: On 2d TQFTs whose values are holomorphic symplectic varieties. http://www.arXiv.org/abs/1106.5698
- 28.Gaiotto, D., Moore, G.W., Tachikawa, Y.: On 6d \({\mathcal{N}=(2,0)}\) theory compactified on a Riemann surface with finite area. http://www.arXiv.org/abs/1110.2657
- 29.Chacaltana, O., Distler, J.: Tinkertoys for Gaiotto Duality. JHEP 1011, 099 (2010) http://www.arXiv.org/abs/1008.5203
- 30.Chacaltana, O., Distler, J.: Tinkertoys for the D N series. http://www.arXiv.org/abs/1106.5410
- 31.Chacaltana, O., Distler, J., Tachikawa, Y.: Nilpotent orbits and codimension-two defects of 6d \({\mathcal{N}=(2,0)}\) theories. http://www.arXiv.org/abs/1203.2930
- 32.Brunner, I., Roggenkamp, D.: Defects and bulk perturbations of boundary Landau–Ginzburg orbifolds. JHEP 04, 001 (2008). http://www.arXiv.org/abs/0712.0188
- 33.Dimofte, T., Gaiotto, D., van der Veen, R.: RG domain walls and hybrid triangulations. To appearGoogle Scholar
- 34.Chen, H.-Y., Dorey, N., Petunin, K.: Moduli space and wall-crossing formulae in higher-rank gauge theories. http://www.arXiv.org/abs/1105.4584
- 35.Fraser, C., Hollowood, T.J.: On the weak coupling spectrum of \({\mathcal{N}=2}\) supersymmetric SU(n) gauge theory. Nucl. Phys. B 490, 217–238 (1997). http://www.arXiv.org/abs/hep-th/9610142 Google Scholar
- 36.Goncharov, A.B.: Ideal webs and moduli spaces of local systems on surfaces (2013, to appear)Google Scholar
- 37.Goncharov, A.B., Kontsevich, M.: (2013, to appear)Google Scholar
- 38.Arkani-Hamed, N., Bourjaily, J., Cachazo, F., Goncharov, A.B., Postnikov, A., Trnka, J.: Scattering amplitudes and the positive Grassmannian (2013, to appear)Google Scholar
Copyright information
© Springer Basel 2013