Annales Henri Poincaré

, Volume 14, Issue 8, pp 1927–2023 | Cite as

Twisted Equivariant Matter

  • Daniel S. Freed
  • Gregory W. Moore


We show how general principles of symmetry in quantum mechanics lead to twisted notions of a group representation. This framework generalizes both the classical threefold way of real/complex/ quaternionic representations as well as a corresponding tenfold way which has appeared in condensed matter and nuclear physics. We establish a foundation for discussing continuous families of quantum systems. Having done so, topological phases of quantum systems can be defined as deformation classes of continuous families of gapped Hamiltonians. For free particles, there is an additional algebraic structure on the deformation classes leading naturally to notions of twisted equivariant K-theory. In systems with a lattice of translational symmetries, we show that there is a canonical twisting of the equivariant K-theory of the Brillouin torus. We give precise mathematical definitions of two invariants of the topological phases which have played an important role in the study of topological insulators. Twisted equivariant K-theory provides a finer classification of topological insulators than has been previously available.


Vector Bundle Central Extension Clifford Algebra Topological Insulator Topological Phasis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Atiyah M.F.: K-Theory. 2nd edn., Advanced Book Classics. Addison-Wesley, Redwood City (1989)Google Scholar
  2. 2.
    Atiyah M.F.: K-theory and reality. Q. J. Math. Oxford Ser. 17(2), 367–386 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Atiyah M.F., Bott R., Shapiro A.A.: Clifford modules. Topology 3, 3–38 (1964)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Atiyah M.F., Hirzebruch F.: Vector bundles and homogeneous spaces. Proc. Symp. Pure Math. 3, 7–38 (1961)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Abramovici, G., Kalugin, P.: Clifford modules and symmetries of topological insulators. Int. J. Geomet. Methods Mod. Phys. 9(03) (2012).
  6. 6.
    Atiyah, M., Segal, G.: Twisted K-theory. Ukr. Mat. Visn. 1(3), 287–330 (2004).
  7. 7.
    Altland, A., Zirnbauer, M.R.: Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structures. Phys. Rev. B 55, 1142–1161 (1997). doi: 10.1103/PhysRevB.55.1142 Google Scholar
  8. 8.
    Bouwknegt, P., Carey, A.L., Mathai, V., Murray, M.K., Stevenson, D.: Twisted K-theory and K-theory of bundle gerbes. Comm. Math. Phys. 228(1), 17–45 (2002). doi: 10.1007/s002200200646.
  9. 9.
    Bassani F., Pastori Parravicini G.: Electronic States and Optical Transitions in Solids. Pergamon Press Ltd., New York (1975)Google Scholar
  10. 10.
    Bouckaert, L.P., Smoluchowski, R., Wigner, E.: Theory of Brillouin Zones and Symmetry Properties of Wave Functions in Crystals. Phys. Rev. 50, 58–67 (1936). doi: 10.1103/PhysRev.50.58
  11. 11.
    Deligne, P.: Notes on spinors, Quantum Fields and Strings: a course for mathematicians, vol. 1, 2, pp. 99–135. (Princeton, NJ, 1996/1997), Am. Math. Soc., Providence, RI (1999)Google Scholar
  12. 12.
    Deligne, P., Etingof, P., Freed, D.S., Jeffrey, L.C., Kazhdan, D., Morgan, J.W., Morrison, D.R., Witten, E. (eds.): Quantum fields and strings: a course for mathematicians, vol. 1, 2, American Mathematical Society, Providence, RI (1999). Material from the Special Year on Quantum Field Theory held at the Institute for Advanced Study, Princeton (1996–1997)Google Scholar
  13. 13.
    Deligne, P., Freed, D.S.: Classical field theory. Quantum fields and strings: a course for mathematicians, vol. 1, 2, pp. 137–225. (Princeton, NJ, 1996/1997), Am. Math. Soc., Providence, RI (1999)Google Scholar
  14. 14.
    Deligne, P., Freed, D.S.: Sign manifesto. Quantum fields and strings: a course for mathematicians, vol. 1, 2, pp. 357–363. (Princeton, NJ, 1996/1997), Am. Math. Soc., Providence, RI (1999)Google Scholar
  15. 15.
    Donovan P., Karoubi M.: Graded Brauer groups and K-theory with local coefficients. Inst. Hautes Études Sci. Publ. Math. 38, 5–25 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Deligne, P., Morgan, J.W.: Notes on supersymmetry (following Joseph Bernstein). Quantum fields and strings: a course for mathematicians, vol. 1, 2, pp. 41–97. (Princeton, NJ, 1996/1997), Am. Math. Soc., Providence (1999)Google Scholar
  17. 17.
    Dyson Freeman J.: The threefold way. Algebraic structure of symmetry groups and ensembles in quantum mechanics. J. Math. Phys. 3, 1199–1215 (1962)MathSciNetADSCrossRefzbMATHGoogle Scholar
  18. 18.
    Essin, A.M., Moore, J.E., Vanderbilt, D.: Magnetoelectric polarizability and axion electrodynamics in crystalline insulators. Phys. Rev. Lett. 102, 146805 (2009). Google Scholar
  19. 19.
    Essin, A.M., Turner, A.M., Moore, J.E., Vanderbilt, D.: Orbital magnetoelectric coupling in band insulators. Phys. Rev. B 81, 205104 (2010).
  20. 20.
    Fidkowski, L., Kitaev, A.: Topological phases of fermions in one dimension. Phys. Rev. B 83, 075103 (2011). doi: 10.1103/PhysRevB.83.075103,
  21. 21.
    Fidkowski, L., Kitaev, A.: Effects of interactions on the topological classification of free fermion systems. Phys. Rev. B 81, 134509 (2010). doi: 10.1103/PhysRevB.81.134509,
  22. 22.
    Fredenhagen, K., Rejzner, K.: Perturbative algebraic quantum field theory.
  23. 23.
    Freed, D.S.: On Wigner’s theorem. Proceedings of the Freedman Fest. In: Vyacheslav, K., Rob, K., Zhenghan, W. (eds.), Geometry & Topology Monographs, vol. 18, pp. 83–89. Mathematical Sciences Publishers (2012).
  24. 24.
    Freed, D.S.: Classical Chern-Simons theory. I. Adv. Math. 113(2), 237–303 (1995).
  25. 25.
    Freed, D.S.: Lectures on twisted K-theory and orientifolds. June. Notes from graduate workshop “K-theory and quantum fields” (2012)
  26. 26.
    Freed, D.S., Hopkins, M.J., Teleman, C.: Loop groups and twisted K-theory I. J. Topol. 4, 737–798 (2011). Google Scholar
  27. 27.
    Freed, D.S., Hopkins, M.J., Teleman, C.: Loop groups and twisted K-theory III. Ann. Math. 174(2), 974–1007 (2011). Google Scholar
  28. 28.
    Freedman, M., Hastings, M.B., Nayak, C., Qi, X.-L., Walker, K., Wang, Z.: Projective ribbon permutation statistics: A remnant of non-Abelian braiding in higher dimensions. Phys. Rev. B 83, 115132 (2011). doi: 10.1103/PhysRevB.83.115132,
  29. 29.
    Fu, L., Kane, C.L.: Topological insulators with inversion symmetry. Phys. Rev. B 76, 045302 (2007). doi: 10.1103/PhysRevB.76.045302,
  30. 30.
    Fu, L., Kane, C.L., Mele, E.J.: Topological insulators in three dimensions. Phys. Rev. Lett. 98, 106803 (2007). doi: 10.1103/PhysRevLett.98.106803, Google Scholar
  31. 31.
    Gawe¸dzki, K., Suszek, R.R., Waldorf, K.: Bundle gerbes for orientifold sigma models.
  32. 32.
    Hořava, P.: Stability of Fermi Surfaces and K Theory. Phys. Rev. Lett. 95, 016405 (2005). doi: 10.1103/PhysRevLett.95.016405,
  33. 33.
    Haldane, F.D.M.: Model for a quantum hall effect without landau levels: condensed-matter realization of the “parity anomaly”. Phys. Rev. Lett. 61, 2015–2018 (1988). doi: 10.1103/PhysRevLett.61.2015
  34. 34.
    Heinzner, P., Huckleberry, A., Zirnbauer, M.R.: Symmetry classes of disordered fermions. Comm. in Math. Phys. 257(3), 725–771 (2005). doi: 10.1007/s00220-005-1330-9,
  35. 35.
    Hasan, M.Z., Kane, C.L.: Colloquium : Topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010). doi: 10.1103/RevModPhys.82.3045, Google Scholar
  36. 36.
    Hasan, M.Z, Moore, J.E.: Three-Dimensional Topological Insulators.
  37. 37.
    Kitaev, A.: Periodic table for topological insulators and superconductors. AIP Conf. Proc. 1134, 22–30 (2009). doi: 10.1063/1.3149495,
  38. 38.
    Konig, M., Buhmann, H., Molenkamp, L.W., Hughes, T.L., Liu, C.-X., et al.: The quantum spin hall effect: theory and experiment. J. Phys. Soc. Jpn. 77, 031007 (2008). doi: 10.1143/JPSJ.77.031007, Google Scholar
  39. 39.
    Kane, C.L., Mele, E.J.: Quantum spin hall effect in graphene. Phys. Rev. Lett. 95, 226801 (2005). doi: 10.1103/PhysRevLett.95.226801 Google Scholar
  40. 40.
    Kane, C.L., Mele, E.J.: Z 2 Topological order and the quantum spin hall effect. Phys. Rev. Lett. 95, 146802 (2005). doi: 10.1103/PhysRevLett.95.146802
  41. 41.
    Liu, Z.X., Wen, X.G., Chen, X., Gu, Z.C.: Symmetry protected topological orders and the cohomology class of their symmetry group.
  42. 42.
    Mermin, N.D.: The topological theory of defects in ordered media. Rev. Mod. Phys. 51, 591–648 (1979). doi: 10.1103/RevModPhys.51.591 Google Scholar
  43. 43.
    Moore, J. E., Balents, L.: Topological invariants of time-reversal-invariant band structures. Phys. Rev. B 75, 121306 (2007). doi: 10.1103/PhysRevB.75.121306,
  44. 44.
    Milnor, J.: Morse theory. Based on lecture notes. Spivak, M., Wells, R. Annals of Mathematics Studies, No 51. Princeton University Press, Princeton (1963)Google Scholar
  45. 45.
    Moore, G.W.: Quantum symmetries and K-theory. Notes from St. Ottilien lectures (2012)
  46. 46.
    Murray, M.K.: Bundle gerbes. J. Lond. Math. Soc. (2) 54(2), 403–416 (1996).
  47. 47.
    Qi, X.-L., Hughes, T.L., Zhang, S.-C.: Topological field theory of time-reversal invariant insulators. Phys. Rev. B 78, 195424 (2008). doi: 10.1103/PhysRevB.78.195424,
  48. 48.
    Qi, X.-L., Zhang, S.-C.: Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011). doi: 10.1103/RevModPhys.83.1057, Google Scholar
  49. 49.
    Roy, R.: Z 2 classification of quantum spin Hall systems: An approach using time-reversal invariance. Phys. Rev. B 79, 195321 (2009). doi: 10.1103/PhysRevB.79.195321
  50. 50.
    Roy, R.: Topological phases and the quantum spin Hall effect in three dimensions. Phys. Rev. B 79, 195322 (2009). doi: 10.1103/PhysRevB.79.195322
  51. 51.
    Roy, R.: Three dimensional topological invariants for time reversal invariant Hamiltonians and the three dimensional quantum spin Hall effect.
  52. 52.
    Reed, M., Simon, B.: Methods of Modern Mathematical Physics. I. Second ed., Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York,. Functional analysis (1980)Google Scholar
  53. 53.
    Ryu, S., Schnyder, A.P., Furusaki, A., Ludwig, A.W.W.: Topological insulators and superconductors: Tenfold way and dimensional hierarchy. New J. Phys. 12, 065010 (2010).
  54. 54.
    Stone, M., Chiu, C.-K., Roy, A.: Symmetries, dimensions and topological insulators: the mechanism behind the face of the Bott clock, J. Phys. A 44(4), 045001,18 (2011). doi: 10.1088/1751-8113/44/4/045001, Google Scholar
  55. 55.
    Segal : Equivariant K-theory. Inst. Hautes Études Sci. Publ. Math. 34, 129–151 (1968)CrossRefzbMATHGoogle Scholar
  56. 56.
    Schnyder, A.P., Ryu, S., Furusaki, A., Ludwig, A.W.W.: Classification of Topological Insulators and Superconductors.
  57. 57.
    Schnyder, A.P., Ryu, S., Furusaki, A., Ludwig, A.W.W.: Classification of topological insulators and superconductors in three spatial dimensions. Phys. Rev. B 78, 195125 (2008). doi: 10.1103/PhysRevB.78.195125,
  58. 58.
    Steenrod N.E.: A convenient category of topological spaces. Mich. Math. J. 14, 133–152 (1967)MathSciNetCrossRefzbMATHGoogle Scholar
  59. 59.
    Teo, J.C.Y., Kane, C.L.: Topological defects and gapless modes in insulators and superconductors. Phys. Rev. B 82, 115120 (2010). doi: 10.1103/PhysRevB.82.115120
  60. 60.
    Thouless, D.J., Kohmoto, M., Nightingale, M.P., den Nijs, M.: Quantized hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett. 49, 405–408 (1982). doi: 10.1103/PhysRevLett.49.405 Google Scholar
  61. 61.
    Tu, J.-L., Xu, P., Laurent-Gengoux, C.: Twisted K-theory of differentiable stacks. Ann. Sci. École Norm. Sup. (4) 37(6), 841–910 (2004). doi: 10.1016/j.ansens.2004.10.002,
  62. 62.
    Turner, A.M., Zhang, Y., Mong, R.S.K., Vishwanath, A.: Quantized response and topology of insulators with inversion symmetry.
  63. 63.
    Wall, C.T.C.: Graded Brauer groups. J. Reine Angew. Math. 213, 187–199 (1963/1964)Google Scholar
  64. 64.
    Weinberg, S.: The quantum theory of fields. Vol. I. Cambridge University Press, Cambridge, Foundations (2005)Google Scholar
  65. 65.
    Wen, X.-G.: Symmetry-protected topological phases in noninteracting fermion systems. Phys. Rev. B 85, 085103 (2012). doi: 10.1103/PhysRevB.85.085103, [cond-mat.mes-hall]
  66. 66.
    Wigner, E.P.: Group theory: and its application to the quantum mechanics of atomic spectra. Expanded and improved ed. Translated from the German by J.J. Griffin. Pure and Applied Physics, vol. 5, Academic Press, New York (1959)Google Scholar
  67. 67.
    Wang, Z., Qi, X.-L., Zhang, S.-C.: Equivalent topological invariants of topological insulators. New J. Phys. 12, 065007 (2010).

Copyright information

© Springer Basel 2013

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of TexasAustinUSA
  2. 2.NHETC and Department of Physics and AstronomyRutgers UniversityPiscatawayUSA

Personalised recommendations