Advertisement

Annales Henri Poincaré

, Volume 15, Issue 1, pp 171–211 | Cite as

Quantum Field Theory on Affine Bundles

  • Marco Benini
  • Claudio DappiaggiEmail author
  • Alexander Schenkel
Article

Abstract

We develop a general framework for the quantization of bosonic and fermionic field theories on affine bundles over arbitrary globally hyperbolic spacetimes. All concepts and results are formulated using the language of category theory, which allows us to prove that these models satisfy the principle of general local covariance. Our analysis is a preparatory step towards a full-fledged quantization scheme for the Maxwell field, which emphasises the affine bundle structure of the bundle of principal U(1)-connections. As a by-product, our construction provides a new class of exactly tractable locally covariant quantum field theories, which are a mild generalization of the linear ones. We also show the existence of a functorial assignment of linear quantum field theories to affine ones. The identification of suitable algebra homomorphisms enables us to induce whole families of physical states (satisfying the microlocal spectrum condition) for affine quantum field theories by pulling back quasi-free Hadamard states of the underlying linear theories.

Keywords

Vector Bundle Linear Part Null Space Covariant Functor Cauchy Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Atiyah M.F.: Complex analytic connections in fibre bundles. Trans. Am. Math. Soc. 85, 181207 (1957)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Benini, M., Dappiaggi, C., Schenkel, A.: The Maxwell field on curved spacetimes: a principal bundle approach (in preparation)Google Scholar
  3. 3.
    Bär, C., Ginoux, N.: Classical and quantum fields on Lorentzian manifolds. Springer Proc. Math. 17, 359 (2011). arXiv:1104.1158 (math-ph)Google Scholar
  4. 4.
    Bär, C., Ginoux, N., Pfäffle, F.: Wave equations on Lorenzian manifolds and quantization. Zürich, Switzerland: Eur. Math. Soc. (2007). arXiv:0806.1036 (math.DG)Google Scholar
  5. 5.
    Bernal, A.N., Sánchez, M.: Smoothness of time functions and the metric splitting of globally hyperbolic space-times. Commun. Math. Phys. 257, 43 (2005) (gr-qc/0401112)Google Scholar
  6. 6.
    Bernal, A.N., Sánchez, M.: Further results on the smoothability of Cauchy hypersurfaces and Cauchy time functions. Lett. Math. Phys. 77, 183 (2006). (gr-qc/ 0512095)Google Scholar
  7. 7.
    Brunetti, R., Duetsch, M., Fredenhagen, K.: Perturbative algebraic quantum field theory and the renormalization groups. Adv. Theor. Math. Phys. 13, 1541 (2009). arXiv:0901.2038 (math-ph)Google Scholar
  8. 8.
    Brunetti, R., Fredenhagen, K., Kohler, M.: The microlocal spectrum condition and wick polynomials of free fields on curved space-times. Commun. Math. Phys. 180, 633 (1996). (gr-qc/9510056)Google Scholar
  9. 9.
    Brunetti, R., Fredenhagen, K., Verch, R.: The generally covariant locality principle: a new paradigm for local quantum field theory. Commun. Math. Phys. 237, 31 (2003). (math-ph/0112041)Google Scholar
  10. 10.
    Castrillón López M., Muñoz Masqué J.: The geometry of the bundle of connections. Math. Z. 236, 797–811 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Dappiaggi, C., Hack, T.-P., Pinamonti, N.: Approximate KMS states for scalar and spinor fields in Friedmann–Robertson–Walker spacetimes. Ann. Henri Poincaré 12, 1449 (2011). arXiv:1009.5179 (gr-qc)Google Scholar
  12. 12.
    Dappiaggi, C., Lang, B.: Quantization of Maxwell’s equations on curved backgrounds and general local covariance. Lett. Math. Phys. 101, 265 (2012). arXiv: 1104.1374 (gr-qc)Google Scholar
  13. 13.
    Dappiaggi, C., Moretti, V., Pinamonti, N.: Rigorous steps towards holography in asymptotically flat spacetimes. Rev. Math. Phys. 18, 349 (2006). (gr-qc/0506069)Google Scholar
  14. 14.
    Dappiaggi, C., Moretti, V., Pinamonti, N.: Cosmological horizons and reconstruction of quantum field theories. Commun. Math. Phys. 285, 1129 (2009). arXiv:0712.1770 (gr-qc)Google Scholar
  15. 15.
    Dappiaggi, C., Siemssen, D.: Hadamard states for the vector potential on asymptotically flat spacetimes. arXiv:1106.5575 (gr-qc)Google Scholar
  16. 16.
    Fewster, C. J., Verch, R.: Dynamical locality and covariance: What makes a physical theory the same in all spacetimes? Ann. Henri Poincaré 13, 1613 (2012). arXiv:1106.4785 (math-ph)Google Scholar
  17. 17.
    Hack, T.-P.: On the Backreaction of Scalar and Spinor Quantum Fields in Curved Spacetimes. Ph.D. Thesis, DESY (2010). arXiv:1008.1776 (gr-qc)Google Scholar
  18. 18.
    Hollands, S., Wald, R.M.: Existence of local covariant time ordered products of quantum fields in curved space-time. Commun. Math. Phys. 231, 309 (2002). (gr-qc/0111108)Google Scholar
  19. 19.
    Kolář I., Michor P.W., Slovák J.: Natural Operations in Differential Geometry. Springer, Berlin (1993)zbMATHGoogle Scholar
  20. 20.
    Kobayashi S., Nomizu K.: Foundations of Differential Geometry, vol. I. Wiley, New York (1996)Google Scholar
  21. 21.
    Sanders, K.: Equivalence of the (generalised) Hadamard and microlocal spectrum condition for (generalised) free fields in curved spacetime. Commun. Math. Phys. 295, 485 (2010). arXiv:0903.1021 (math-ph)Google Scholar
  22. 22.
    Sanders, K., Dappiaggi, C., Hack, T.-P.: Electromagnetism, local covariance, the Aharonov–Bohm effect and Gauss’ law. arXiv:1211.6420 (math-ph)Google Scholar
  23. 23.
    Sahlmann, H., Verch, R.: Microlocal spectrum condition and Hadamard form for vector valued quantum fields in curved space-time. Rev. Math. Phys. 13, 1203 (2001). arXiv:math-ph/0008029Google Scholar
  24. 24.
    Waldmann, S.: Geometric Wave Equations. arXiv:1208.4706 (math.DG)Google Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  • Marco Benini
    • 1
  • Claudio Dappiaggi
    • 1
    Email author
  • Alexander Schenkel
    • 2
  1. 1.Dipartimento di FisicaUniversità di Pavia & INFNPaviaItaly
  2. 2.Fachgruppe MathematikBergische Universität WuppertalWuppertalGermany

Personalised recommendations