Annales Henri Poincaré

, Volume 14, Issue 5, pp 1305–1347 | Cite as

Semi- and Non-Relativistic Limit of the Dirac Dynamics with External Fields

  • Martin L. R. Fürst
  • Max LeinEmail author


We show how to approximate Dirac dynamics for electronic initial states by semi- and non-relativistic dynamics. To leading order, these are generated by the semi- and non-relativistic Pauli hamiltonian where the kinetic energy is related to \({\sqrt{m^2 + \xi^2}}\) and \({\frac{1}{2m}\xi^2}\) , respectively. Higher-order corrections can in principle be computed to any order in the small parameter \({{\upsilon /c}}\)which is the ratio of typical speeds to the speed of light. Our results imply the dynamics for electronic and positronic states decouple to any order in \({\upsilon /c \ll 1}\) . To decide whether to get semi- or non-relativistic effective dynamics, one needs to choose a scaling for the kinetic momentum operator. Then the effective dynamics are derived using space-adiabatic perturbation theory by Panati et al. (Adv Theor Math Phys 7:145–204, 2003) with the novel input of a magnetic pseudodifferential calculus adapted to either the semi- or non-relativistic scaling.


Pseudodifferential Operator Selfadjoint Operator Symbol Class Moyal Product Pseudodifferential Calculus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bjorken J.D., Drell S.D.: Relativistic Quantum Mechanics. McGraw-Hill, New York (1998)Google Scholar
  2. 2.
    Bechouche P., Mauser N.J., Poupaud F.: (Semi)-Nonrelativistic limits of the Dirac equation with external time-dependent electromagnetic field. Commun. Math. Phys. 197, 405–425 (1998). doi: 10.1007/s002200050457 MathSciNetADSzbMATHCrossRefGoogle Scholar
  3. 3.
    Bargmann V., Michel L., Telegdi V.L.: Precession of the polarisation of particles moving in a homogeneous electromagnetic field. Phys. Rev. Lett. 2, 435 (1959)ADSCrossRefGoogle Scholar
  4. 4.
    Brummelhuis R., Nourrigat J.: Scattering amplitude for Dirac operators. Commun. Partial Diff. Equ. 51(3), 231–261 (1999)MathSciNetGoogle Scholar
  5. 5.
    Cordes H.O.: A pseudodifferential Foldy–Wouthuysen transform. Commun. Partial Diff. Equ. 8(13), 1475–1485 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Cordes H.O.: A precise pseudodifferential Foldy–Wouthuysen transform for the Dirac equation. J. Evol. Equ. 4(1), 128–138 (2004)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Douglas M., Kroll N.M.: Quantum electrodynamical corrections to the fine structure of helium. Ann. Phys. 82, 89–155 (1974)ADSCrossRefGoogle Scholar
  8. 8.
    De Nittis G., Lein M.: Applications of magnetic \({\Psi}\) DO techniques to SAPT—beyond a simple review. Rev. Math. Phys. 23, 233–260 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Dimassi M., Sjöstrand J.: Spectral Asymtptotics in the Semi-Classical Limit, vol. 268. London Mathematical Society, London (1999)CrossRefGoogle Scholar
  10. 10.
    Folland G.B.: Harmonic Analysis on Phase Space. Princeton University Press, Princeton (1989)Google Scholar
  11. 11.
    Foldy L.L., Wouthuysen S.A.: On the Dirac theory of spin 1/2 particles and its non-relativistic limit. Phys. Rev. 78(1), 29–36 (1950)ADSzbMATHCrossRefGoogle Scholar
  12. 12.
    Gesztesy F., Grosse H., Thaller B.: A rigorous approach to relativistic corrections of bound state energies for spin-1/2 particles. Annales de l’Institut Henri Poincaré (section A) 40(2), 159–174 (1984)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Grigore D.R., Nenciu G., Purice R.: On the nonrelativistic limit of the Dirac Hamiltonian. Annales de l’Institut Henri Poincaré 51(3), 231–261 (1989)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Heß B.A.: Relativistic electronic-structure calculations employing a two-component no-pair formalism with external-field projection operators. Phys. Rev. A 33(6), 3742–3748 (1986)ADSCrossRefGoogle Scholar
  15. 15.
    Hunziker W.: On the nonrelativistic limit of the Dirac theory. Commun. Math. Phys. 40(3), 215–222 (1975)MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    Hörmander L.: The Weyl Calculus of Pseudo-Differential Operators. Commun. Pure Appl. Math. XXXII, 359–443 (1979)CrossRefGoogle Scholar
  17. 17.
    Iftimie V., Măntoiu M., Purice R.: Magnetic pseudodifferential operators. Publ. Res. Inst. Math. Sci. 43(3), 585–623 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Iftimie V., Măntoiu M., Purice R.: Commutator criteria for magnetic pseudodifferential operators. Commun. Partial Diff. Equ. 35, 1058–1094 (2010)zbMATHCrossRefGoogle Scholar
  19. 19.
    Jansen G., Heß B.A.: Revision of the Douglas–Kroll transformation. Phys. Rev. A 39(11), 6016–6017 (1989)ADSCrossRefGoogle Scholar
  20. 20.
    Lein M.: Two-parameter asymptotics in magnetic Weyl calculus. J. Math. Phys. 51, 123519 (2010)MathSciNetADSCrossRefGoogle Scholar
  21. 21.
    Lein, M.: Semiclassical Dynamics and Magnetic Weyl Calculus. Phd thesis, Technische Universität München, Munich, Germany (2011)Google Scholar
  22. 22.
    Mauser N.J.: Rigorous derivation of the Pauli equation with time-dependent electromagnetic field. VLSI Design 9, 415–426 (1999)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Măntoiu M., Purice R.: The magnetic Weyl calculus. J. Math. Phys. 45(4), 1394–1417 (2004)MathSciNetADSzbMATHCrossRefGoogle Scholar
  24. 24.
    Panati G., Spohn H., Teufel S.: Space adiabatic perturbation theory. Adv. Theor. Math. Phys. 7, 145–204 (2003)MathSciNetGoogle Scholar
  25. 25.
    Reiher M.: Relativistic Douglas–Kroll theory. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2, 139–149 (2012)CrossRefGoogle Scholar
  26. 26.
    Reiher M., Wolf A.: Exact decoupling of the Dirac Hamiltonian. I. General theory. J. Chem. Phys. 121(5), 2037–2047 (2004)ADSCrossRefGoogle Scholar
  27. 27.
    Spohn H.: Semiclassical limit of the Dirac equation and spin precession. Ann. Phys. 282, 420–431 (2000)MathSciNetADSzbMATHCrossRefGoogle Scholar
  28. 28.
    Siedentop H., Stockmeyer E.: The Douglas–Kroll–Heß method: convergence and block-diagonalization of Dirac operators. Ann. Henri Poincaré 7(1), 45–58 (2006)MathSciNetADSzbMATHCrossRefGoogle Scholar
  29. 29.
    Teufel S.: Adiabatic Perturbation Theory in Quantum Dynamics. Springer, Berlin (2003)zbMATHCrossRefGoogle Scholar
  30. 30.
    Thaller B.: The Dirac Equation. Springer, Berlin (1992)Google Scholar
  31. 31.
    Treves F.: Topological vector spaces, distributions and kernels. Academic Press, Dublin (1967)zbMATHGoogle Scholar

Copyright information

© Springer Basel 2012

Authors and Affiliations

  1. 1.Excellence Cluster UniverseTechnische Universität MünchenGarchingGermany
  2. 2.Technische Universität München, Department für MathematikGarchingGermany
  3. 3.Eberhard Karls Universität Tübingen, Mathematisches InstitutTübingenGermany

Personalised recommendations