Advertisement

Annales Henri Poincaré

, Volume 14, Issue 4, pp 967–999 | Cite as

Future Non-Linear Stability for Reflection Symmetric Solutions of the Einstein–Vlasov System of Bianchi Types II and VI0

  • Ernesto NungesserEmail author
Article

Abstract

Using the methods developed for the Bianchi I case we have shown that a boostrap argument is also suitable to treat the future non-linear stability for reflection symmetric solutions of the Einstein–Vlasov system of Bianchi types II and VI0. These solutions are asymptotic to the Collins–Stewart solution with dust and the Ellis–MacCallum solution, respectively. We have thus generalized the results obtained by Rendall and Uggla in the case of locally rotationally symmetric Bianchi II spacetimes to the reflection symmetric case. However, we needed to assume small data. For Bianchi VI0 there is no analogous previous result.

Keywords

Fundamental Form Symmetric Solution Energy Momentum Tensor Bianchi Type Vlasov Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alho, A., Mena, F.P., Valiente Kroon, J.A.: The Einstein–Friedrich- nonlinear scalar field system and the stability of scalar field Cosmologies (2011, arXiv:1006.3778v2 [gr-qc])Google Scholar
  2. 2.
    Bianchi L.: Sugli spazi a tre dimensioni che ammettono un gruppo continuo di movimenti. Mem. Soc. it. delle Sc. 3(11), 267–352 (1898)Google Scholar
  3. 3.
    Calogero S., Heinzle J.M.: Oscillations toward the singularity of LRS Bianchi type IX cosmological models with Vlasov matter. SIAM J. Appl. Dyn. Syst. 9, 1244–1262 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Calogero S., Heinzle J.M.: Bianchi cosmologies with anisotropic matter: locally rotationally symmetric models. Physica D 240, 636–669 (2011)MathSciNetADSzbMATHCrossRefGoogle Scholar
  5. 5.
    Choquet-Bruhat Y.: Problème de Cauchy pour le système intégro différentiel d’Einstein–Liouville. Ann. Inst. Fourier 21, 181–201 (1971)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Collins C.B., Stewart J.M.: Qualitative cosmology. Mon. Not. R. Astron. Soc. 153, 419–434 (1971)ADSGoogle Scholar
  7. 7.
    Costa, J.L., Alho, A., Natário, J.: Spherical linear waves in de Sitter spacetime (2011, arXiv:1107.0802v1 [gr-qc])Google Scholar
  8. 8.
    Ellis G.F.R., MacCallum M.A.H.: A class of homogeneous cosmological models. Commun. Math. Phys. 12, 108–141 (1969)MathSciNetADSzbMATHCrossRefGoogle Scholar
  9. 9.
    Ellis G.F.R., Wainwright J.: Cosmological observations. In: Wainwright, J., Ellis, G.F.R. (eds) Dynamical Systems in Cosmology, Cambridge University Press, Cambridge (1997)Google Scholar
  10. 10.
    Friedrich H., Rendall A.D.: The Cauchy problem for the Einstein equations. In: Schmidt, B.G. (ed.) Einstein’s Field Equations and their Physical Implications, Springer, Berlin (2000)Google Scholar
  11. 11.
    Gödeke A., Rendall A.D.: Future geodesic completeness of some spatially homogeneous solutions of the vacuum Einstein equations in higher dimensions. Class. Quantum Grav. 27, 155019 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    Hawking S.W., Ellis G.F.R.: The Large Scale Structure of Space–Time. Cambridge University Press, Cambridge (1973)zbMATHCrossRefGoogle Scholar
  13. 13.
    Heckmann, O., Schücking, E.: In: Witten, L. (ed.) Gravitation: An Introduction to Current Research. Wiley, New York (1962)Google Scholar
  14. 14.
    Heißel, G.: Dynamics of locally rotationally symmetric Bianchi type VIII cosmologies with anisotropic matter. (2012, arXiv:1203.2852v1 [gr-qc])Google Scholar
  15. 15.
    Hervik S., Lim W.C., Sandin P., Uggla C.: Future asymptotics of tilted Bianchi type II cosmologies. Class. Quantum Gravit. 76, 185006 (2010)MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    Hewitt C.G., Uggla C., Wainwright J.: Bianchi cosmologies: extending the scope. In: Wainwright, J., Ellis, G.F.R. (eds.) Dynamical Systems in Cosmology, Cambridge University Press, Cambridge (1997)Google Scholar
  17. 17.
    Hewitt C.G., Wainwright J.: Bianchi cosmologies: non-tilted class B models. In: Wainwright, J., Ellis, G.F.R. (eds.) Dynamical Systems in Cosmology, Cambridge University Press, Cambridge (1997)Google Scholar
  18. 18.
    Kasner E.: Geometrical Theorems on Einstein’s Cosmological Equations. Am. J. Math. 43(4), 217–221 (1921)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Lee H.: Asymptotic behaviour of the Einstein–Vlasov system with a positive cosmological constant. Math. Proc. Camb. Philos. Soc. 137, 495–509 (2004)zbMATHCrossRefGoogle Scholar
  20. 20.
    Maartens R., Maharaj S.D.: Collision-free Gases in Bianchi space–times. Gen. Relativ. Gravit. 22, 595–607 (1990)MathSciNetADSzbMATHCrossRefGoogle Scholar
  21. 21.
    Nungesser E.: Isotropization of non-diagonal Bianchi I spacetimes with collisionless matter at late times assuming small data. Class. Quantum Gravit. 27, 235025 (2010)MathSciNetADSCrossRefGoogle Scholar
  22. 22.
    Rendall A.D.: Cosmic censorship and the Vlasov equation. Class. Quantum Gravit. 9, L99 (1992)MathSciNetADSCrossRefGoogle Scholar
  23. 23.
    Rendall A.D.: Cosmic censorship for some spatially homogeneous cosmological models. Ann. Phys. 233, 82–96 (1994)MathSciNetADSzbMATHCrossRefGoogle Scholar
  24. 24.
    Rendall A.D.: Global properties of locally spatially homogeneous cosmological models with matter. Math. Proc. Camb. Philos. Soc. 118, 511–526 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Rendall A.D.: The Initial singularity in solutions of the Einstein–Vlasov system of Bianchi type I. J. Math. Phys. 37, 438–451 (1996)MathSciNetADSzbMATHCrossRefGoogle Scholar
  26. 26.
    Rendall A.D.: Cosmological models and centre manifold theory. Gen. Relativ. Gravit. 34, 1277–1294 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Rendall A.D.: The Einstein–Vlasov system. In: Chrusciel, P.T., Friedrich, H. (eds.) The Einstein Equations and the Large Scale Behavior of Gravitational Fields, Birkhauser, Basel (2004)Google Scholar
  28. 28.
    Rendall A.D.: Partial differential equations in general relativity. Oxford University Press, Oxford (2008)zbMATHGoogle Scholar
  29. 29.
    Rendall A.D., Tod K.P.: Dynamics of spatially homogeneous solutions of the Einstein–Vlasov equations which are locally rotationally symmetric. Class. Quantum Grav. 16, 1705–1726 (1998)MathSciNetADSCrossRefGoogle Scholar
  30. 30.
    Rendall A.D., Uggla C.: Dynamics of spatially homogeneous locally rotationally symmetric solutions of the Einstein–Vlasov equations. Class. Quantum Gravit. 17, 4697–4713 (2000)MathSciNetADSzbMATHCrossRefGoogle Scholar
  31. 31.
    Ringström H.: Future stability of the Einstein-non-linear scalar field system. Invent. Math. 173, 123–208 (2008)MathSciNetADSzbMATHCrossRefGoogle Scholar
  32. 32.
    Ringström H.: Power law inflation. Commun. Math. Phys. 290, 155–218 (2009)ADSzbMATHCrossRefGoogle Scholar
  33. 33.
    Ringström, H.: The Cauchy Problem in General Relativity. In: ESI Lectures in Mathematics and Physics. European Mathematical Society, Zurich (2009)Google Scholar
  34. 34.
    Ryan M.P., Shepley L.C.: Homogeneous Relativistic Cosmologies. Princeton University Press, Princeton (1975)Google Scholar
  35. 35.
    Stewart, J.M.: Non-equilibrium relativistic kinetic theory. Lecture Notes in Physics, vol. 10. Springer, Berlin (1971)Google Scholar
  36. 36.
    Stewart J.M.: Advanced General Relativity. Cambridge University Press, Cambridge (1991)CrossRefGoogle Scholar
  37. 37.
    Taub A.H.: Empty spacetimes admitting a three-parameter group of motions. Ann. Math. 53(3), 472–490 (1951)MathSciNetADSzbMATHCrossRefGoogle Scholar
  38. 38.
    Wainwright J.: Bianchi cosmologies: non-tilted class A models. In: Wainwright, J., Ellis, G.F.R. (eds.) Dynamical Systems in Cosmology, Cambridge University Press, Cambridge (1997)CrossRefGoogle Scholar
  39. 39.
    Wainwright J., Ellis G.: Dynamical Systems in Cosmology. Cambridge University Press, Cambridge (1997)CrossRefGoogle Scholar
  40. 40.
    Wald R.M.: General Relativity. The University of Chicago Press, Chicago (1984)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2012

Authors and Affiliations

  1. 1.Max-Planck-Institute for Gravitational Physics (Albert-Einstein-Institute)GolmGermany

Personalised recommendations