Annales Henri Poincaré

, Volume 14, Issue 1, pp 1–36 | Cite as

On the Energy-Momentum Spectrum of a Homogeneous Fermi Gas

  • Jan Dereziński
  • Krzysztof A. Meissner
  • Marcin Napiórkowski
Open Access
Article

Abstract

We consider translation-invariant quantum systems in thermodynamic limit. We argue that their energy-momentum spectra should have shapes consistent with effective models involving quasiparticles. Our main example is second quantized homogeneous interacting Fermi gas in a large cubic box with periodic boundary conditions, at zero temperature. We expect that its energy-momentum spectrum has a positive energy gap and a positive critical velocity.

Notes

Acknowledegments

The research of J.D. and M.N was supported in part by the National Science Center (NCN) grant No. 2011/01/B/ST1/04929. The work of M.N. was also supported by the Foundation for Polish Science International PhD Projects Programme co-financed by the EU European Regional Development Fund.

Open Access

This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

References

  1. 1.
    Bardeen J., Cooper L.N., Schrieffer J.R.: Theory of superconductivity. Phys. Rev. 108, 1175 (1957)MathSciNetADSMATHCrossRefGoogle Scholar
  2. 2.
    Beliaev, S. T.: Effect of pairing correlations on nuclear properties. Mat.-Fys. Skr. Danske Vid. Selsk 31(11) (1959)Google Scholar
  3. 3.
    Black C.T., Ralph D.C., Tinkham M.: Spectroscopy of the Superconducting Gap in Individual Nanometer-Scale Aluminum Particles. Phys. Rev. Lett. 76, 688 (1996)ADSCrossRefGoogle Scholar
  4. 4.
    Bogoliubov, N. N.: J. Phys. (USSR) 9, 23 (1947); J. Phys. USSR 11, 23 (1947), reprinted in D. Pines The Many-Body Problem (New York, W.A. Benjamin 1962)Google Scholar
  5. 5.
    Bogolyubov N.N. Jr, Brankov J.G., Zagrebnov V.A., Kurbatov A.M., Tonchev IM.S.: Some classes of exactly soluble models of problems in quantum statistical mechanics: the method of the approximating Hamiltonian. Russ. Math. Surv. 39(6), 1–50 (1984)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bratteli O., Robinson D.W.: Operator Algebras and Quantum Statistical Mechanics, vol. 1, 2nd edn. Springer, Berlin (1987)Google Scholar
  7. 7.
    Bratteli O., Robinson D.W.: Operator Algebras and Quantum Statistical Mechanics, vol. 2, 2nd edn. Springer, Berlin (1996)Google Scholar
  8. 8.
    Cornean H., Dereziński J., Ziń P.: On the infimum of the energy-momentum spectrum of a homogeneous Bose gas. J. Math. Phys. 50, 062103 (2009)MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    Critchley R.H., Solomon A.I.: A Variational Approach to Superfluidity. J. Stat. Phys. 14, 381–393 (1976)MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    Dereziński J.: Asymptotic completeness of long-range N-body quantum systems. Ann. Math. 138, 427–476 (1993)MATHCrossRefGoogle Scholar
  11. 11.
    Dereziński J.: Asymptotic completeness in quantum field theory. A class of Galilei covariant models. Rev. Math. Phys. 10, 191–233 (1998)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Dereziński J., Gérard C.: Asymptotic completeness in quantum field theory. Massive Pauli-Fierz Hamiltonians. Rev. Math. Phys. 11, 383–450 (1999)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Dereziński, J., Napiórkowski, M., Solovej, J. P.: On the minimization of Hamiltonians over pure gaussian states. Preprint, arXiv:1102.2931Google Scholar
  14. 14.
    Fetter A.L., Walecka J.D.: Quantum Theory Of Many-Particle Systems. McGraw-Hill, San Francisco (1971)Google Scholar
  15. 15.
    Fröhlich J., Griesemer M., Schlein B.: Asymptotic completeness for Compton scattering. Comm. Math. Phys. 252, 415–476 (2004)MathSciNetADSMATHCrossRefGoogle Scholar
  16. 16.
    Glimm J., Jaffe A.: Quantum Physics. A Functional Integral Point of View, 2nd edn. Springer, New York (1987)Google Scholar
  17. 17.
    Jost R.: The General Theory of Quantized Fields. AMS, Providence, RI (1965)MATHGoogle Scholar
  18. 18.
    Maris H.J.: Phonon–phonon interactions in liquid helium. Rev. Mod. Phys. 49, 341 (1977)ADSCrossRefGoogle Scholar
  19. 19.
    Ring P., Schuck P.: The Nuclear Many-Body Problem. Springer, New York (1980)CrossRefGoogle Scholar
  20. 20.
    Schwarz, A. S: Mathematical foundations of quantum field theory. Nauka, Moscow (1975) (Russian)Google Scholar
  21. 21.
    Seiringer R.: The excitation spectrum for weakly interacting bosons. Commun. Math. Phys. 306, 565–578 (2011)MathSciNetADSMATHCrossRefGoogle Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  • Jan Dereziński
    • 1
  • Krzysztof A. Meissner
    • 2
  • Marcin Napiórkowski
    • 1
  1. 1.Department of Mathematical Methods in Physics, Faculty of PhysicsUniversity of WarsawWarsawPoland
  2. 2.Institute of Theoretical Physics, Faculty of PhysicsUniversity of WarsawWarsawPoland

Personalised recommendations