Annales Henri Poincaré

, Volume 13, Issue 8, pp 1733–1744 | Cite as

A New Estimate on the Two-Dimensional Indirect Coulomb Energy

  • Rafael D. Benguria
  • Pablo Gallegos
  • Matěj Tušek
Article

Abstract

We prove a new lower bound on the indirect Coulomb energy in two-dimensional quantum mechanics in terms of the single particle density of the system. The new universal lower bound is an alternative to the Lieb–Solovej–Yngvason bound with a smaller constant, \({C = (4/3)^{3/2} \sqrt{5 \pi -1} \approx 5.90 < C_{\rm LSY} = 192 \sqrt{2 \pi} \approx 481.27}\), which also involves an additive gradient energy term of the single particle density.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Benguria R.D., Loss M., Siedentop H.: Stability of atoms and molecules in an ultrarelativistic Thomas–Fermi–Weizsäcker model. J. Math. Phys. 49, 012302 (2008)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Benguria R.D., Bley G.A., Loss M.: An improved estimate on the indirect Coulomb Energy. Int. J. Quantum Chem. 112, 1579–1584 (2012)CrossRefGoogle Scholar
  3. 3.
    Benguria R.D., Pérez-Oyarzún S.: The ultrarelativistic Thomas–Fermi von Weizsäcker model. J. Phys. A Math. Gen. 35, 3409–3414 (2002)ADSMATHCrossRefGoogle Scholar
  4. 4.
    Chan G.K.-L., Handy N.C.: Optimized Lieb–Oxford bound for the exchange–correlation energy. Phys. Rev. A 59, 3075–3077 (1999)ADSCrossRefGoogle Scholar
  5. 5.
    Dirac P.A.M.: Note on exchange phenomena in the Thomas atom. Math. Proc. Camb. Philos. Soc. 26, 376–385 (1930)ADSMATHCrossRefGoogle Scholar
  6. 6.
    Engel, E.: Zur relativischen Verallgemeinerung des TFDW modells. Ph.D. Thesis Johann Wolfgang Goethe Universität zu Frankfurt am Main (1987)Google Scholar
  7. 7.
    Engel E., Dreizler R.M.: Field-theoretical approach to a relativistic Thomas–Fermi–Weizsäcker model. Phys. Rev. A 35, 3607–3618 (1987)ADSCrossRefGoogle Scholar
  8. 8.
    Engel E., Dreizler R.M.: Solution of the relativistic Thomas–Fermi–Dirac–Weizsäcker model for the case of neutral atoms and positiveions. Phys. Rev. A 38, 3909–3917 (1988)ADSCrossRefGoogle Scholar
  9. 9.
    Hainzl C., Seiringer R.: Bounds on one-dimensional exchange energies with applications to lowest landau band quantum mechanics. Lett. Math. Phys. 55, 133–142 (2001)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Levy M., Perdew J.P.: Tight bound and convexity constraint on the exchange–correlation–energy functional in the low–density limit, and other formal tests of generalized–gradient approximations. Phys. Rev. B 48, 11638–11645 (1993)ADSCrossRefGoogle Scholar
  11. 11.
    Lieb E.H.: The stability of matter. Rev. Mod. Phys. 48, 553–569 (1976)MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    Lieb E.H.: A lower bound for Coulomb energies. Phys. Lett. 70 A, 444–446 (1979)MathSciNetADSGoogle Scholar
  13. 13.
    Lieb E.H., Oxford S.: Improved lower bound on the indirect Coulomb energy. Int. J. Quantum Chem. 19, 427–439 (1981)CrossRefGoogle Scholar
  14. 14.
    Lieb E.H., Seiringer R.: The Stability of Matter in Quantum Mechanics. Cambridge University Press, Cambridge (2009)MATHCrossRefGoogle Scholar
  15. 15.
    Lieb E.H., Solovej J.P., Yngvason J.: Quantum dots. In: Knowles, I. (ed) Differential equations and mathematical physics (Birmingham, AL, 1994), pp. 157–172. Int. Press, Boston, MA (1995)Google Scholar
  16. 16.
    Lieb E.H., Solovej J.P., Yngvason J.: Ground states of large quantum dots in magnetic fields. Phys. Rev. B 51, 10646–10666 (1995)ADSCrossRefGoogle Scholar
  17. 17.
    Lieb, E.H., Thirring, W.: Bound for the kinetic energy of fermions which proves the stability of matter. Phys. Rev. Lett. 35, 687–689 (1975); Errata 35, 1116 (1975)Google Scholar
  18. 18.
    Lieb E.H., Yau H.-T.: Many-body stability implies a bound on the fine-structure constant. Phys. Rev. Lett. 61, 1695–1697 (1988)MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    Lieb E.H., Yau H.-T.: The stability and instability of relativistic matter. Commun. Math. Phys. 118, 177–213 (1988)MathSciNetADSMATHCrossRefGoogle Scholar
  20. 20.
    Morgan J.D. III: Thomas–Fermi and other density functional theories. In: Drake, G.W.F. (ed) Springer Handbook of Atomic, Molecular, and Optical Physics, vol. 1, pp. 295–306. Springer–Verlag, New York (2006)CrossRefGoogle Scholar
  21. 21.
    Nam P.-T., Portmann F., Solovej J.P.: Asymptotics for two-dimensional Atoms. Ann. Henri Poincaré. 13, 333–362 (2012)MathSciNetADSMATHCrossRefGoogle Scholar
  22. 22.
    Perdew J.P., Burke K., Ernzerhof M.: Generalized Gradient Approximation Made Simple. Phys. Rev. Letts. 77, 3865–3868 (1996)ADSCrossRefGoogle Scholar
  23. 23.
    Räsänen E., Pittalis S., Capelle K., Proetto C.R.: Lower bounds on the exchange-correlation energy in reduced dimensions. Phys. Rev. Letts. 102, 206406 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    Räsänen E., Seidl M., Gori–Giorgi P.: Strictly correlated uniform electron droplets. Phys. Rev. B 83, 195111 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    Stein E.M., Weiss G.: Introduction to Fourier analysis on Euclidean spaces. Princeton University Press, Princeton, NJ (1971)MATHGoogle Scholar
  26. 26.
    Vela A., Medel V., Trickey S.B.: Variable Lieb–Oxford bound satisfaction in a generalized gradient exchange–corelation functional. J. Chem. Phys. 130, 244103 (2009)ADSCrossRefGoogle Scholar
  27. 27.
    Voronoi G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. J. für die Reine und Angewandte Mathematik 133, 97–178 (1907)Google Scholar

Copyright information

© Springer Basel AG 2012

Authors and Affiliations

  • Rafael D. Benguria
    • 1
  • Pablo Gallegos
    • 1
  • Matěj Tušek
    • 1
  1. 1.Departmento de FísicaP. Universidad Católica de ChileSantiagoChile

Personalised recommendations