Annales Henri Poincaré

, Volume 13, Issue 4, pp 943–989 | Cite as

Asymptotic Behavior of Massless Dirac Waves in Schwarzschild Geometry

Article

Abstract

In this paper, we show that massless Dirac waves in the Schwarzschild geometry decay to zero at a rate t−2λ, where λ = 1, 2, . . . is the angular momentum. Our technique is to use Chandrasekhar’s separation of variables whereby the Dirac equations split into two sets of wave equations. For the first set, we show that the wave decays as t−2λ. For the second set, in general, the solutions tend to some explicit profile at the rate t−2λ. The decay rate of solutions of Dirac equations is achieved by showing that the coefficient of the explicit profile is exactly zero. The key ingredients in the proof of the decay rate of solutions for the first set of wave equations are an energy estimate used to show the absence of bound states and zero energy resonance and the analysis of the spectral representation of the solutions. The proof of asymptotic behavior for the solutions of the second set of wave equations relies on careful analysis of the Green’s functions for time independent Schrödinger equations associated with these wave equations.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alinhac S.: Energy multipliers for perturbations of the Schwarzschild metric. Commun. Math. Phys. 288(1), 199–224 (2009)MathSciNetADSMATHCrossRefGoogle Scholar
  2. 2.
    Andrews, G.E., Askey, R., Roy, R.: Special functions. In: Encyclopedia of Mathematics and its Applications, vol. 71. Cambridge University Press, Cambridge (1999)Google Scholar
  3. 3.
    Blue P., Soffer A.: Semilinear wave equations on the Schwarzschild manifold. I. Local decay estimates. Adv. Differ. Equ. 8(5), 595–614 (2003)MathSciNetMATHGoogle Scholar
  4. 4.
    Blue P., Soffer A.: The wave equation on the Schwarzschild metric. II. Local decay for the spin-2 Regge-Wheeler equation. J. Math. Phys. 46(1), 012502–9 (2005)Google Scholar
  5. 5.
    Blue P., Sterbenz J.: Uniform decay of local energy and the semi-linear wave equation on Schwarzschild space. Commun. Math. Phys. 268(2), 481–504 (2006)MathSciNetADSMATHCrossRefGoogle Scholar
  6. 6.
    Blue P.: Decay of the Maxwell field on the Schwarzschild manifold. J. Hyperbolic Differ. Equ. 5(4), 807–856 (2008)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Chandrasekhar S.: The mathematical theory of black holes International Series of Monographs on Physics, vol. 69. Oxford Science Publications, The Clarendon Press, Oxford University Press, New York (1983)Google Scholar
  8. 8.
    Dafermos M., Rodnianski I.: A proof of Price’s law for the collapse of a self-gravitating scalar field. Invent. Math. 162(2), 381–457 (2005)MathSciNetADSMATHCrossRefGoogle Scholar
  9. 9.
    Dafermos, M., Rodnianski, I.: A note on energy currents and decay for the wave equation on a Schwarzschild background. arXiv:0710.0171 (2007)Google Scholar
  10. 10.
    Dafermos M., Rodnianski I.: The red-shift effect and radiation decay on black hole spacetimes. Commun. Pure Appl. Math. 62(7), 859–919 (2009)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Deift P., Trubowitz E.: Inverse scattering on the line. Commun. Pure Appl. Math. 32(2), 121–251 (1979)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Donninger, R., Schlag, W.: Decay estimates for the one-dimensional wave equation with an inverse power potential. arXiv:0911.3174v2 (2010)Google Scholar
  13. 13.
    Donninger R., Schlag W., Soffer A.: A proof of Price’s Law on Schwarzschild black hole manifolds for all angular momenta. Adv. Math. 226(1), 484–540 (2011)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Donninger, R., Schlag, W., Soffer, A.: On pointwise decay of linear waves on a Schwarzschild black hole background. arXiv:0911.3179 (2009)Google Scholar
  15. 15.
    Finster F., Kamran N., Smoller J., Yau S.T.: Decay rates and probability estimates for massive Dirac particles in the Kerr-Newman black hole geometry. Commun. Math. Phys. 230(2), 201–244 (2002)MathSciNetADSMATHCrossRefGoogle Scholar
  16. 16.
    Finster F., Kamran N., Smoller J., Yau S.T.: The long-time dynamics of Dirac particles in the Kerr-Newman black hole geometry. Adv. Theor. Math. Phys. 7(1), 25–52 (2003)MathSciNetGoogle Scholar
  17. 17.
    Finster F., Smoller J.: Decay of solutions of the Teukolsky equation for higher spin in the Schwarzschild geometry. Adv. Theor. Math. Phys. 13(1), 71–110 (2009)MathSciNetMATHGoogle Scholar
  18. 18.
    Goldberg J.N., Macfarlane A.J., Newman E.T., Rohrlich F., Sudarshan E.C.G.: Spin-sspherical harmonics and \({\eth}\) . J. Math. Phys. 8, 2155–2161 (1967)MathSciNetADSMATHCrossRefGoogle Scholar
  19. 19.
    Hawking S.W., Ellis G.F.R.: The large scale structure of space-time. In: Cambridge Monographs on Mathematical Physics, No. 1. Cambridge University Press, London (1973)Google Scholar
  20. 20.
    Kronthaler, J.: The Cauchy problem for the wave equation in the Schwarzschild geometry. J. Math. Phys. 47(4) 042501-29 (2006)Google Scholar
  21. 21.
    Kronthaler, J.: Decay Rates for Spherical Scalar Waves in the Schwarzschild Geometry. arXiv:0709.3703 (2007)Google Scholar
  22. 22.
    Luk J.: Improved decay for solutions to the linear wave equation on a Schwarzschild black hole. Ann. Henri Poincaré 11(5), 805–880 (2010)MathSciNetADSMATHCrossRefGoogle Scholar
  23. 23.
    Regge T., Wheeler J.A.: Stability of a Schwarzschild singularity. Phys. Rev. 108(2), 1063–1069 (1957)MathSciNetADSMATHCrossRefGoogle Scholar
  24. 24.
    Tataru, D.: Local decay of waves on asymptotically flat stationary space-times. arXiv:0910.5290 (2009)Google Scholar
  25. 25.
    Teschl, G.: Mathematical methods in quantum mechanics. In: Graduate Studies in Mathematics, vol. 99. American Mathematical Society, Providence (2009)Google Scholar
  26. 26.
    Teukolsky S., Press W.H.: Perturbations of a rotating black hole. III. Interaction of the hole with gravitational and electromagnetic radiation. Astrophys. J. 193, 443–461 (1974)ADSCrossRefGoogle Scholar
  27. 27.
    Torresdel Castillo G.F.: 3-D spinors, spin-weighted functions and their applications. In: Progress in Mathematical Physics, vol. 32. Birkhäuser Boston Inc., Boston (2003)CrossRefGoogle Scholar
  28. 28.
    Twainy, F.: The time decay of solutions to the scalar wave equation in Schwarzschild background. Ph.D Thesis, UCSD (1989)Google Scholar
  29. 29.
    Whiting B.F.: Mode stability of the Kerr black hole. J. Math. Phys. 30(6), 1301–1305 (1989)MathSciNetADSMATHCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of MichiganAnn ArborUSA
  2. 2.Department of Mathematics and Institute of Natural SciencesShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations